cellular RNAs posttranscriptionally by click reaction using
ribonucleoside 6.11
We thank Prof. S. Galande for providing the facility to
carry out radiolabeling experiments, and Prof. K. N. Ganesh
for his valuable comments. S.G.S. is grateful to the Depart-
ment of Science and Technology, India, for financial support.
A.A.S. and A.A.T. are thankful to CSIR, India, for graduate
fellowship.
Fig. 3 PAGE of oligoribonucleotide products obtained from click
reactions between transcript 9 and alkyne substrates 14 and 15.
Lane 1, CIP treated 9. Lanes 2–4, reaction with 15. Lanes 5–7, reaction
with 14. Bands corresponding to the biotinylated- (17) and fluorescent-
(16) click products are indicated with arrows.7
Notes and references
1 (a) P. M. E. Gramlich, C. T. Wirges, A. Manetto and T. Carell,
Angew. Chem., Int. Ed., 2008, 47, 8350; (b) S. H. Weisbrod and
A. Marx, Chem. Commun., 2008, 5675; (c) M. D. Best, Biochemistry,
2009, 48, 6571; (d) E. Lallana, R. Riguera and E. Fernandez-Megia,
Angew. Chem., Int. Ed., 2011, 50, 8794.
2 (a) S. Jin, C. V. Miduturu, D. C. McKinney and S. K. Silverman,
J. Org. Chem., 2005, 70, 4284; (b) G. M. Blackburn, M. J. Gait,
D. Loakes and D. M. Williams, Nucleic Acids in Chemistry
and Biology, RSC, UK, 3rd edn., 2006.
with biotin-alkyne substrate 15 gave a small amount of the
expected click product 17 and also an unknown slower migrating
oligoribonucleotide as the major product (Fig. 3, lanes 2–4 and
Fig. S6, ESIw). Rewardingly, when the overall incubation time was
reduced by eliminating the dephosphorylation step, the biotinylated
click product was obtained as the major product, which was
confirmed by MALDI-TOF MS analysis (Fig. S7, ESIw).
Next, postsynthetic conversion of the azide to amine
functionality by Staudinger reduction reaction was investigated
(Scheme 2). Reduction of azide-modified oligoribonucleotide 9
was performed in the presence of triphenylphosphine-3,30,
30 0-trisulfonic acid (TPPTS), at 55 1C for 15 h. The reduced
product 18, after treatment with CIP, was purified by PAGE
under denaturing conditions and confirmed by mass analysis
(Fig. S8, ESIw). Importantly, under these conditions there
was no discernible degradation of the oligoribonucleotide
product. Together, these results clearly demonstrate that the
azide-modified oligoribonucleotides synthesized by transcription
reactions are highly suitable for posttranscriptional chemical
labeling protocols.
3 Selected examples: (a) S. H. Weisbrod and A. Marx, Chem.
Commun., 2007, 1828; (b) V. R. Sirivolu, P. Chittepu and
F. Seela, ChemBioChem, 2008, 9, 2305; (c) P. M. E. Gramlich,
S. Warncke, J. Gierlich and T. Carell, Angew. Chem., Int. Ed.,
2008, 47, 3442; (d) R. M. Franzini and E. T. Kool, J. Am. Chem.
Soc., 2009, 131, 16021; (e) Z. Pianowski, K. Gorska, L. Oswald,
C. A. Merten and N. Winssinger, J. Am. Chem. Soc., 2009,
131, 6492; (f) K. Furukawa, H. Abe, K. Hibino, Y. Sako,
S. Tsuneda and Y. Ito, Bioconjugate Chem., 2009, 20, 1026;
(g) Y. Xu, Y. Suzuki and M. Komiyama, Angew. Chem., Int.
Ed., 2009, 48, 3281; (h) C. Beyer and H.-A. Wagenknecht, Chem.
Commun., 2010, 46, 2230; (i) A. K. Sharma and J. M. Heemstra,
J. Am. Chem. Soc., 2011, 133, 12426.
4 Most of the methods use alkyne-modified RNA oligonucleotides.
(a) A. H. El-Sagheer and T. Brown, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 15329; (b) P. van Delft, N. J. Meeuwenoord,
S. Hoogendoorn, J. Dinkelaar, H. S. Overkleeft, G. A. van der
Marel and D. V. Filippov, Org. Lett., 2010, 12, 5486;
(c) K. N. Jayaprakash, C. G. Peng, D. Butler, J. P. Varghese,
M. A. Maier, K. G. Rajeev and M. Manoharan, Org. Lett., 2010,
12, 5410; (d) H. Peacock, O. Maydanovych and P. A. Beal, Org.
Lett., 2010, 12, 1044; (e) E. Paredes and S. R. Das, ChemBioChem,
2011, 12, 125; (f) K. Onizuka, A. Shibata, Y. Taniguchi and
S. Sasaki, Chem. Commun., 2011, 47, 5004.
In summary, the versatile azide group has been effectively
incorporated into RNA oligonucleotides by transcription
reactions in the presence of a new azide-modified ribonucleotide
analogue. This modification has allowed the postsynthetic chemical
functionalization of oligoribonucleotides by chemoselective
reactions such as CuAAC and Staudinger reactions. Our
results demonstrate that this facile and modular labeling
protocol will provide an alternative access to functionalized
oligoribonucleotides for applications in a variety of areas
ranging from diagnostics to therapeutics and material sciences.
We are currently investigating the possibility of labeling
5 T. Wada, A. Mochizuki, S. Higashiya, H. Tsuruoka, S. Kawahara,
M. Ishikawa and M. Sekine, Tetrahedron Lett., 2001, 42, 9215.
6 Few examples are available in which the azide group has been
introduced postsynthetically or during solid-phase chemical synthesis.
These methods are either time-consuming or involve elaborate
chemical manipulations. (a) G. P. Miller and E. T. Kool, J. Org.
Chem., 2004, 69, 2404; (b) A. Kiviniemi, P. Virta and H. Lonnberg,
¨
Bioconjugate Chem., 2008, 19, 1726; (c) G. Pourceau, A. Meyer,
J.-J. Vasseur and F. Morvan, J. Org. Chem., 2009, 74, 6837;
(d) M. Aigner, M. Hartl, K. Fauster, J. Steger, K. Bister and
R. Micura, ChemBioChem, 2011, 12, 47.
7 See ESIw for experimental details.
8 Failed reactions resulting in truncated transcripts would not carry
the radiolabel, and hence, would remain undetected.
9 Significant reduction in transcription efficiency is observed with
templates that result in a modification near the promoter region.
(a) S. G. Srivatsan and Y. Tor, J. Am. Chem. Soc., 2007, 129, 2044;
(b) M. G. Pawar and S. G. Srivatsan, Org. Lett., 2011, 13, 1114.
10 1,8-Naphthalimide derivatives are very useful fluorescent probes.
(a) M. Sawa, T.-L. Hsu, T. Itoh, M. Sugiyama, S. R. Hanson,
P. K. Vogt and C.-H. Wong, Proc. Natl. Acad. Sci. U. S. A., 2006,
103, 12371; (b) Y. Tian, F. Su, W. Weber, V. Nandakumar,
B. R. Shumway, Y. Jin, X. Zhou, M. R. Holl, R. H. Johnson
and D. R. Meldrum, Biomaterials, 2010, 31, 7411.
11 The ability of T7 RNA polymerase to incorporate both UTP and
7 suggests that cellular RNAs can be possibly functionalized with
azide groups in vivo by the ribonucleoside salvage pathway.
C. Y. Jao and A. Salic, Proc. Natl. Acad. Sci. U. S. A., 2008,
105, 15779.
Fig. 4 Fluorescence spectra (2 mM) of click products 16 and 20.7
500 Chem. Commun., 2012, 48, 498–500
c
This journal is The Royal Society of Chemistry 2012