JOURNAL OF
POLYMER SCIENCE
ARTICLE
WWW.POLYMERCHEMISTRY.ORG
REFERENCES AND NOTES
Crosslinked membranes were obtained following two-step
procedure: first the glass plate was covered in an oven for
16 h at 80 ꢀC, then the cover was removed and the mem-
brane was obtained by casting at 120 ꢀC. To remove any
excess of the solvent,ꢀ the membranes were dried for 3 d
under vacuum at 160 C.
1 Steele, B. C.; Heinzel, A. Nature 2001, 414, 345–352.
2 Kreuer, K. D. J. Membr Sci 2001, 185, 29–39.
3 Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; Mc
Grath, J. E. Chem Rev 2004, 104, 4587–4612.
4 Mauritz, K. A.; Moore, R. B. Chem Rev 2004, 104, 4535–4586.
5 Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Chem
Rev 2004, 104, 4637–4678.
Crosslinking of Terpolymer VI with Decafluorobiphenyl
Used as Crosslinker
6 Li, Q.; He, R. H.; Jensen, J. O.; Bjerrum, N. J Chem Mater
2003, 15, 4896–4915.
Terpolymer VI (0.2829 g, 0.60 mmol) was dissolved in DMAc
(15 mL) after heating at 70 ꢀC for 17 h. K2CO3 (0.094 g,
0.68 mmol) was added and the reaction mixture was stirred
7 Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt,
M. J Electrochem Soc 1995, 142, L121–L123.
ꢀ
at 60 C for 1.5 h. Decafluorobiphenyl (0.0169 g, 0.05 mmol)
8 Ma, Y. L.; Wainright, J. S.; Litt, M.; Savinell, R. F. J Electro-
chem Soc 2004, 151, A8–A16.
dissolved in DMAc (0.5 mL) was added to the solution,
which was filtered and then poured onto a glass substrate.
9 Carollo, A.; Quartarone, E.; Tomasi, C.; Mustarelli, P.; Belotti,
F.; Magistris, A.; Maestroni, F.; Parachini, M.; Garlaschelli, L.;
Righetti, P. P. J Power Sources 2006, 160, 175–180.
ꢀ
The mixture was left covered for 16 h at 80 C in the oven.
After removing the cover, the membrane was obtained by
ꢀ
casting at 120 C. The membranes were dried for 3 d under
10 Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J Progr
Polym Sci 2009, 34, 449–477.
ꢀ
vacuum at 160 C.
11 Gourdoupi, N.; Andreopoulou, K.; Deimede, V.; Kallitsis, J.
K. Chem Mater 2003, 15, 5044–5050.
Doping Procedure
Membranes were immersed in 85% phosphoric acid at dif-
ferent temperatures for different doping times, to study the
doping behavior. After each immersion, the samples were
wiped with paper and the weight gain was calculated from
the sample’s weight before and after the immersion. The
doping level is defined as the weight percent of the acid
(85% H3PO4) per gram of each polymer.
12 Pefkianakis, E. K.; Deimede, V.; Daletou, M. K.; Gourdoupi,
N.; Kallitsis, J. K. Macromol Rapid Commun 2005, 26, 1724–
1728.
13 Kallitsis, J. K.; Geormezi, M.; Neophytides, S. G. Polym Int
2009, 58, 1226–1233.
14 Geormezi, M.; Chochos, C.; Gourdoupi, N.; Neophytides, S.
G.; Kallitsis, J. K. J Power Sources 2011, 196, 9382–9390.
15 Morfopoulou, C.; Andreopoulou, A. K.; Kallitsis, J. K.
J Polym Sci Part A: Polym Chem 2011, 49, 4325–4334.
CONCLUSIONS
16 Qingfeng, L.; Hjuler, H. A.; Hasiotis, C.; Kallitsis, J. K.; Kon-
toyannis, C. G.; Bjerrum, N. J. Electrochem Solid-State Lett
2002, 5, A125–A128.
Aromatic polyethers bearing polar pyridine units in the main
chain and side chain cross-linkable hydroxyl and propargyl
groups have been successfully prepared. The synthesized
polymers showed high molecular weights, high Tg values and
thermal stability, as well as high doping levels when doped
in phosphoric acid. Crosslinked membranes could be
obtained either by direct crosslinking of hydroxyl groups
with crosslinker or by further functionalization of hydroxyl
groups to the propargyl analog. Crosslinking of propargyl-
based copolymers by thermal treatment leads to the forma-
tion of a stable network. The obtained crosslinked mem-
branes showed very high glass transition temperatures up to
17 Avgouropoulos, G.; Papavasiliou, J.; Daletou, M. K.; Kallit-
sis, J. K.; Ioannides, T.; Neophytides, S. G. Appl Catal-B: Envi-
ron 2009, 90, 628–632.
18 Avgouropoulos, G.; Ioannides, T.; Kallitsis, J. K.; Neophyti-
des, S. G. Chem Eng J 2011, in press.
19 Kerres, J.; Ullrich, A.; Meier, F.; Haring, T. Solid State Ionics
¨
1999, 125, 243–249.
20 Kerres, J. A. Fuel Cells 2005, 5, 230–247.
21 Deimede, V.; Voyiatzis, G. A.; Kallitsis, J. K.; Qingfeng, L.;
Bjerrum, N. J. Macromolecules 2000, 33, 7609–7617.
ꢀ
22 Hofmann, M. A.; Ambler, C. M.; Maher, A. E.; Chalkova, E.;
Zhou, X. Y.; Lvov, S. N.; Allock, H. R. Macromolecules 2002, 35,
6490–6493.
325 C. The other method followed for covalent crosslinking
is the nucleophilic substitution of polyhalides, such as decaf-
luorobiphenyl with hydroxyl groups. In all cases, crosslinked
membranes showed improved mechanical in terms of glass
transition temperatures (Tgs) and thermal properties as well
as lower doping levels compared with the non crosslinked
ones. The obtained phosphoric acid doping levels although
lower compared with the non crosslinked ones are still in
the range where useful high temperature electrolytes can be
provided.
23 Ding, F. C.; Wang, S. J.; Xiao, M.; Li, X. H.; Meng, Y. Z.
J Power Sources 2007, 170, 20–27.
24 Ding, F. C.; Wang, S. J.; Xiao, M.; Meng, Y. Z. J Power Sour-
ces 2007, 164, 488–495.
25 Feng, S.; Shang, Y.; Xie, X.; Wang, Y.; Xu, J. J Membr Sci
2009, 335, 13–20.
26 Huang, Y.; Pan, Y.; Fu, J.; Huang, X.; Tang, X. J Appl Polym
Sci 2009, 113, 2353–2360.
Financial support of this work from the European Commission
through the program ‘‘Development of an Internal Reforming
Alcohol High Temperature PEM Fuel Cell Stack’’, IRAFC FCH-JU
245202 (2010–2012) is greatly acknowledged. The authors
thank Mr. G. Paloumbis MSc from Advent Technologies S. A. for
his help in monomer synthesis.
27 Papadimitriou, K. D.; Paloukis, F.; Neophytides, S. G.; Kallitsis,
J. K. Macromolecules 2011, 44, 4942–4951.
28 Jia, J.; Baker, G. L. J Polym Sci Part B: Polym Phys 1998,
36, 959–968.
29 Kelman, S. D.; Matteucci, S.; Bielawski, C. W.; Freeman, B.
D. Polymer 2007, 48, 6881–6892.
WWW.MATERIALSVIEWS.COM
JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY 2012, 50, 207–216
215