Table 1. Optimization Studies for Copper-Catalyzed CꢀH/
NꢀH CouplingꢀAnnulation Sequence of 2-(Phenylethynyl)-
aniline (2a) with 2-Phenyl-1,3,4-oxadiazole (1a) for the Synthe-
sis of 3aaa
Scheme 1. Dehydrogenative Approaches to N-Azolylindoles
Cu(OAc)2
(mol %)
additive
(mol %)
3aa,
% yieldb
entry
1
200
20
none
(71)
46
2
none
3
20
pyridine (100)
bpyc (20)
65
4
20
53
5
20
phend (20)
bathophene (20)
none
85 (79)
75
6
20
7f
8f
200
20
19
phen (20)
2
a Reaction conditions: Cu(OAc)2, additive, K2CO3 (0.60 mmol), 1a
(0.60 mmol), 2a (0.30 mmol), toluene (2.0 mL), reflux, 3ꢀ10 h, O2 (1 atm,
balloon). b The yields are determined by 1H NMR. Yield of isolated
product is in parentheses. c 2,20-Bipyridine. d 1,10-Phenanthroline. e 4,7-
Diphenyl-1,10-phenanthroline. f Under N2.
stoichiometric in copper, our postulated process would be
operative. We then turned our attention to the catalytic
variant. Not surprisingly, a decrease in the amount of
Cu(OAc)2 to 20 mol % resulted in a lower yield of 3aa
(entry 2). Thus, we subsequently tested the addition of
some additives to support the copper center. Nitrogen-
based ligands generally improved the reaction efficiency
(entries 3ꢀ6), with phen proving to be optimal (entry 5).
Other reaction systems using CuCl2, Cu(OTf)2, Na2CO3,
Cs2CO3, DMF, or DMSO gave no positive effect on yield
(data not shown). In the absence of molecular oxygen, the
yield largely dropped under either stoichiometric or cata-
lytic conditions (entries 7 and 8).
With catalytic conditions employed for entry 5 in
Table 1, we performed the domino reaction of 2a with a
range of 1,3,4-oxadiazoles 1. The representative N-azoly-
lindole products are illustrated in Table 2. Oxadiazoles 1
containing electron-donating methoxy as well as electron-
withdrawing chloro and trifluoromethyl groups under-
went the reaction very smoothly to afford the correspond-
ing indoles 3baꢀda in good yields. A bulky naphthalene
motif could be employed without any difficulties (3ea).
While the alkyl-substituted oxadiazole showed somewhat
lower reactivity, the satisfactory yield was obtained under
stoichiometric conditions (3fa). The generality of o-alky-
nylanilines was also good. At the alkyne terminus, electro-
nically and sterically diverse functions such as methyl,
methoxy, chloro, trifluoromethyl, and 1-naphthyl groups
were equally tolerated (3abꢀaf and 3cbꢀcd). The thienyl-
substituted aniline was transformed to the indoleꢀthiophene
conjugation 3ag in a comparable yield. Moreover, the
copper catalysis could accommodate primary, secondary,
and tertiary alkyl substituents (3ahꢀaj). The C5-substi-
tuted indoles 3ak and 3al were also readily accessible under
standard conditions.
(4) With palladium, see: (a) Tsang, W. C. P.; Zheng, M.; Buchwald,
S. L. J. Am. Chem. Soc. 2005, 127, 14560. (b) Thu, H.-Y.; Yu, W.-Y.;
Che, C.-M. J. Am. Chem. Soc. 2006, 128, 9048. (c) Wasa, M.; Yu, J.-Q.
J. Am. Chem. Soc. 2008, 130, 14058. (d) Jordan-Hore, A. A.; Johansson,
C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. J. Am. Chem. Soc. 2008,
130, 16184. (e) Mei, T.-S.; Wang, X.; Yu, J.-Q. J. Am. Chem. Soc. 2009,
131, 10806. (f) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-J.; Liu, L. J. Am.
Chem. Soc. 2011, 133, 1466. (g) Sun, K.; Li, Y.; Xiong, T.; Zhang, J.;
Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694. (h) Cho, S. H.; Yoon, J.;
Chang, S. J. Am. Chem. Soc. 2011, 133, 5996. (i) Youn, S. W.; Bihn, J. H.;
Kim, B. S. Org. Lett. 2011, 13, 3738. With copper, see: (j) Chen, X.; Hao,
X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790. (k)
Uemura, T.; Imoto, S.; Chatani, N. Chem. Lett. 2006, 35, 842. (l)
Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett. 2009,
11, 1607. (m) Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178. (n)
Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D. S.; Li, C.-J. Adv. Synth. Catal.
2010, 352, 632. (o) Zhao, H.; Wang, M.; Su, W.; Hong, M. Adv. Synth.
Catal. 2010, 352, 1301. (p) John, A.; Nicholas, K. M. J. Org. Chem. 2011,
76, 4158. With silver, see: (q) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S.
Angew. Chem., Int. Ed. 2009, 48, 9127. With cobalt and manganese, see:
(r) Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S. Angew. Chem., Int. Ed.
2010, 49, 9899. Metal-free processes: (s) Antonchick, A. P.; Samanta,
R.; Kulikov, K.; Lategahn, J. Angew. Chem., Int. Ed. 2011, 50, 8605.
(t) Froehr, T.; Sindkinger, C. P.; Kloeckner, U.; Finkbeiner, P.;
Nachtsheim, B. J. Org. Lett. 2011, 13, 3754. (u) Lamani, M.; Prabhu,
K. R. J. Org. Chem. 2011, 76, 7938. (v) Kim, H. J.; Kim, J.; Cho, S. H.;
Chang, S. J. Am. Chem. Soc. 2011, 133, 16382. (w) Wertz, S.; Kodama,
S.; Studer, A. Angew. Chem., Int. Ed. 2011, 50, 11511. (x) Kantak, A. A.;
Potavathri, S.; Barham, R. A.; Romano, K. M.; DeBoef, B. J. Am.
Chem. Soc. 2011, 133, 19960. Also see: (y) Armstrong, A.; Collins, J. C.
Angew. Chem., Int. Ed. 2010, 49, 2282. (z) Zhang, M. Synthesis 2011,
3408.
(5) (a) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem.
Soc. 2010, 132, 6900. (b) Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk,
R.; Bolm, C.; Miura, M. Org. Lett. 2011, 13, 359. (c) Matsuda, N.;
Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2011, 13, 2860.
(6) Reviews: (a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108,
3395. (b) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469. Copper-based
systems: (c) Hiroya, K.; Itoh, S.; Sakamoto, T. J. Org. Chem. 2004, 69,
1126. (d) Swamy, N. K.; Yazici, A.; Pyne, S. G. J. Org. Chem. 2010, 75,
3412. (e) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2012, 77, 617.
Org. Lett., Vol. 14, No. 2, 2012
665