J. Jayabharathi et al. / Spectrochimica Acta Part A 86 (2012) 69–75
75
Fig. 8. HOMO–LUMO orbital picture of mpdsi.
The HOMO is the orbital that primarily acts as an electron donor
and the LUMO is the orbital that largely acts as the electron accep-
tor. HOMO is located on imidazole ring, partly styryl ring, two
phenyl rings at C1 and C2 carbons and oxygen of the methoxy
group whereas LUMO is located imidazole ring and styryl ring
The HOMO → LUMO transition implies that intramolecular charge
transfer takes place [31] within the molecule. The energy gap (Eg) of
mpdsi has been calculated from the HOMO and LUMO levels (Fig. 8).
The decrease in the HOMO and LUMO energy gap explains the
probable charge transfer (CD) taking place inside the chromophore.
Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin,
R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P.
Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain,
O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A.
Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong,
C. Gonzalez, J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford,
CT, 2004.
[9] M. Wagener, J. Sadowsky, J. Gasteiger, J. Am. Chem. Soc. 117 (1995) 7769–
7775.
[10] Y. Yang, W.J. Zhang, X.M. Gao, Int. J. Quantum Chem. 106 (2006) 1199–1207.
[11] J. Jayabharathi, V. Thanikachalam, K. Saravanan, J. Photochem. Photobiol. A 208
(2009) 13–20.
[12] J. Jayabharathi, V. Thanikachalam, K. Saravanan, N. Srinivasan, J. Fluoresc.
(2010), doi:10.1007/s10895-010-0737-7.
4. Conclusion
[13] K. Saravanan, N. Srinivasan, K. Thanikachalam, J. Jayabharathi, J. Fluoresc. 21
(2011) 65–80.
[14] P. Gayathri, J. Jayabharathi, N. Srinivasan, A. Thiruvalluvar, R.J. Butcher, Acta
Crystallogr. E 66 (2010) o1703.
[15] P. Gayathri, J. Jayabharathi, K. Saravanan, A. Thiruvalluvar, R.J. Butcher, Acta
Crystallogr. E 66 (2010) o1791.
[16] P. Gayathri, J. Jayabharathi, N. Srinivasan, A. Thiruvalluvar, R.J. Butcher, Acta
Crystallogr. E 66 (2010) o2519.
[17] J. Jayabharathi, V. Thanikachalam, N. Srinivasan, K. Saravanan, J. Fluoresc.
(2010), doi:10.1007/s10895-010-0747-5.
[18] J. Jayabharathi, V. Thanikachalam, K. Saravanan, N. Srinivasan, M. Venkatesh
Perumal, Spectrochim. Acta A 79 (2010) 794–802.
[19] J. Jayabharathi, V. Thanikachalam, K. Jayamoorthy, M. Venkatesh Perumal, Spec-
trochim. Acta A 79 (2010) 6–16.
The presence of ˛ twist in this imidazole drops the fluorescence
quantum yield. The observed dipole moment and hyperpolariz-
ability can be explained by the reduced planarity caused by the
steric interaction between the two styryl and p-methoxyphenyl
rings at C(3) and N(7) atoms. Hence, the steric interaction must
be reduced in order to obtain larger ˇ0 values. From the physic-
ochemical studies on imidazoles it was concluded that molecules
of higher hyperpolarizability have larger dipole moments used as
potential NLO molecules.
[20] P. Gayathri, J. Jayabharathi, N. Srinivasan, A. Thiruvalluvar, R.J. Butcher, Acta
Crystallogr. E 66 (2010) o2826.
Acknowledgments
[21] J. Jayabharathi, V. Thanikachalam, K. Saravanan, M. Venkatesh Perumal, Spec-
trochim. Acta A 79 (2011) 1240–1246.
[22] J. Jayabharathi, V. Thanikachalam, K. Brindha Devi, N. Srinivasan, Spectrochim.
Acta A 82 (2011) 513–520.
[23] J. Jayabharathi, V. Thanikachalam, K. Brindha Devi, M. Venkatesh Perumal, Spec-
trochim. Acta A 83 (2011) 587–591.
One of the authors Dr. J. Jayabharathi, Associate professor,
Department of Chemistry, Annamalai University is thankful to
Department of Science and Technology [No. SR/S1/IC-07/2007] and
University Grants commission (F. No. 36-21/2008 (SR)) for provid-
ing funds to this research work.
[24] G. Gabor, Y.F. Frei, E. Fischer, J. Phys. Chem. 72 (1968) 3266.
[25] P. Ren, T. Liu, J. Qin, C. Chen, Spectrochim. Acta A 59 (2003) 1095.
[26] S.K. Dogra, J. Photochem. Photobiol. A 172 (2005) 185.
[27] Z. Zhou, C.J. Fahrni, J. Am. Chem. Soc. 126 (29) (2004) 8862.
[28] Y. Porter, K.M. OK, N.S.P. Bhuvanesh, P.S. Halasyamani, Chem. Mater. 13 (2001)
1910–1915.
[29] M. Narayana Bhat, S.M. Dharmaprakash, J. Cryst. Growth 236 (2002) 376–380.
[30] D. Steiger, C. Ahlbrandt, R. Glaser, J. Phys. Chem. B 102 (1998) 4257–4260.
[31] V. Crasta, V. Ravindrachary, R.F. Bharantri, R. Gonsalves, J. Cryst. Growth 267
(2004) 129–133.
[32] P. Wang, P. Zhu, W. Wu, H. Kang, C. Ye, Phys. Chem. Chem. Phys. 1 (1999)
3519–3525.
[33] Y. Yang, W.J. Zhang, X.M. Gao, Int. J. Quant. Chem. 106 (2006) 1199–1207.
[34] S.F. Tayyari, S. Laleh, Z.M. Tekyeh, M.Z. Tabrizi, Y.A. Wang, H. Rahemi, Mol.
Struct. 827 (2007) 176–187.
References
[1] P. Barni, P. Savarino, G. Viscardi, Trends Heterocycl. Chem. 2 (1991) 27.
[2] L.A. Barkova, V.V. Geuzinski, V.I. Danilova, K.M. Degtyarenko, T.N. Kopylanova,
A.L. Kuznelsov, Electron (Moscow) 8 (1981) 1728.
[3] M. Massacesi, M. Biddau, E. Barni, P. Savarino, Inorg. Chim. Acta 82 (1984) 27.
[4] K. Mahanalingam, M. Nethaji, P.K. Das, J. Mol. Struct. 378 (1996) 177–188.
[5] R. Koch, J.J. Finnerty, T. Bruhn, J. Phys. Org. Chem. 21 (2008) 954–962.
[6] E. Kleinpeter, A. Koch, B. Mikhova, B.A. Stamboliyska, T.M. Kolev, Tetrahedron
Lett. 49 (2008) 1323–1327.
[7] S.R. Flom, P.F. Barbara, Chem. Phys. Lett. 94 (1983) 488–493.
[8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, P. Hratchian, J.B.
[35] J. Marshal, Ind. J. Phys. 7213 (1988) 659–661.
[36] G. Wang, F. Lian, Z. Xie, G. Su, L. Wang, X. Jing, F. Wang, Synth. Met. 131 (2002)
1–5.