ACS Medicinal Chemistry Letters
Page 4 of 8
tion and Kinome Profiling Reveal Altered Regulation of Multiple Signalꢀ
ing Pathways in B Lymphocytes from Patients with Systemic Lupus Eryꢀ
thematosus. Arthritis Rheum. 2010, 62 (8), 2412–2423.
Endres, A. Geisser, F.P. Cordoba, A. Kunkler, G. Laue, C. Textor,
and A. Cattini for pharmacokinetic assay work, B. Shrestha for
protein expression, R. Elling for crystallography support, K. Beltz
and P. Santos for CDZ173 developability assessment as well as J.
Wagner and G. Weckbecker for scientific guidance. We are grateꢀ
ful to the MX beamline team at the Swiss Light Source (PSI Vilꢀ
ligen, Switzerland) for outstanding support at the beamline and
Expose GmbH (Switzerland) for diffraction data collection.
1
2
3
4
5
6
(14)
SuárezꢀFueyo, A.; Barber, D. F.; MartínezꢀAra, J.; Zeaꢀ
Mendoza, A. C.; Carrera, A. C. Enhanced Phosphoinositide 3ꢀKinase δ
Activity Is a Frequent Event in Systemic Lupus Erythematosus That Conꢀ
fers Resistance to ActivationꢀInduced T Cell Death. J. Immunol. 2011,
187 (5), 2376–2385.
(15)
Randis, T. M.; Puri, K. D.; Zhou, H.; Diacovo, T. G. Role of
7
8
9
PI3Kδ and PI3Kγ in Inflammatory Arthritis and Tissue Localization of
Neutrophils. Eur. J. Immunol. 2008, 38 (5), 1215–1224.
(16)
SuárezꢀFueyo, A.; Rojas, J. M.; Cariaga, A. E.; García, E.;
ABBREVIATIONS
Steiner, B. H.; Barber, D. F.; Puri, K. D.; Carrera, A. C. Inhibition of
PI3Kδ Reduces Kidney Infiltration by Macrophages and Ameliorates
Systemic Lupus in the Mouse. J. Immunol. 2014, 193 (2), 544–554.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
APDS, activated PI3Kδ syndrome; BAL, bronchoalveolar lavage;
BAV, absolute oral bioavailability; BMMC, bone marrowꢀderived
mast cells; CIA, collagenꢀinduced arthritis; CYP, cytochrome
P450; GPCR, G proteinꢀcoupled receptor; hERG, human etherꢀàꢀ
goꢀgoꢀrelated gene; MLR, mixed lymphocyte reaction; THPP,
5,6,7,8ꢀtetrahydropyrido[4,3ꢀd]pyrimidine; mTOR, mechanistic
Target Of Rapamycin; PAMPA, parallel artificial membrane perꢀ
meability assay; PASLI, p110 delta activating mutation causing
senescent T cells, lymphadenopathy, and immunodeficiency;
PBMC, peripheral blood mononuclear cells; PI3K, Phosphoinosiꢀ
tideꢀ3ꢀkinase; SAR, structureꢀactivity relationship; SRBC, sheep
red blood cell(s); tPSA, topological polar surface area.
(17)
Angulo, I.; Vadas, O.; Garçon, F.; BanhamꢀHall, E.; Plagnol,
V.; Leahy, T. R.; Baxendale, H.; Coulter, T.; Curtis, J.; Wu, C.; Blakeꢀ
Palmer, K.; Perisic, O.; Smyth, D.; Maes, M.; Fiddler, C.; Juss, J.; Cilliers,
D.; Markelj, G.; Chandra, A.; Farmer, G.; Kielkowska, A.; Clark, J.;
Kracker, S.; Debré, M.; Picard, C.; Pellier, I.; Jabado, N.; Morris, J. A.;
BarcenasꢀMorales, G.; Fischer, A.; Stephens, L.; Hawkins, P.; Barrett, J.
C.; Abinun, M.; Clatworthy, M.; Durandy, A.; Doffinger, R.; Chilvers, E.
R.; Cant, A. J.; Kumararatne, D.; Okkenhaug, K.; Williams, R. L.; Conꢀ
dliffe, A.; Nejentsev, S. Phosphoinositide 3ꢀKinase δ Gene Mutation Preꢀ
disposes to Respiratory Infection and Airway Damage. Science 2013, 342
(6160), 866–871.
(18)
Lucas, C. L.; Kuehn, H. S.; Zhao, F.; Niemela, J. E.; Deenick,
E. K.; Palendira, U.; Avery, D. T.; Moens, L.; Cannons, J. L.; Biancalana,
M.; Stoddard, J.; Ouyang, W.; Frucht, D. M.; Rao, V. K.; Atkinson, T. P.;
Agharahimi, A.; Hussey, A. A.; Folio, L. R.; Olivier, K. N.; Fleisher, T.
A.; Pittaluga, S.; Holland, S. M.; Cohen, J. I.; Oliveira, J. B.; Tangye, S.
G.; Schwartzberg, P. L.; Lenardo, M. J.; Uzel, G. DominantꢀActivating
Germline Mutations in the Gene Encoding the PI(3)K Catalytic Subunit
p110δ Result in T Cell Senescence and Human Immunodeficiency. Nat.
Immunol. 2014, 15 (1), 88–97.
REFERENCES
(1)
Cantley, L. C. The Phosphoinositide 3ꢀKinase Pathway. Sci-
ence 2002, 296 (5573), 1655–1657.
(2)
Vanhaesebroeck, B.; GuillermetꢀGuibert, J.; Graupera, M.;
Bilanges, B. The Emerging Mechanisms of IsoformꢀSpecific PI3K Signalꢀ
ling. Nat. Rev. Mol. Cell Biol. 2010, 11 (5), 329–341.
(19)
Marone, R.; Cmiljanovic, V.; Giese, B.; Wymann, M. P. Tarꢀ
(3)
Reif, K.; Okkenhaug, K.; Sasaki, T.; Penninger, J. M.;
geting Phosphoinositide 3ꢀkinase—Moving towards Therapy. Biochim.
Biophys. Acta BBA - Proteins Proteomics 2008, 1784 (1), 159–185.
Vanhaesebroeck, B.; Cyster, J. G. Cutting Edge: Differential Roles for
Phosphoinositide 3ꢀKinases, p110γ and p110δ, in Lymphocyte Chemotaxꢀ
is and Homing. J. Immunol. 2004, 173 (4), 2236–2240.
(20)
Gold, M. R.; Puri, K. D. Selective Inhibitors of Phosphoinosiꢀ
tide 3ꢀKinase Delta: Modulators of BꢀCell Function with Potential for
Treating Autoimmune Inflammatory Diseases and BꢀCell Malignancies.
Front. Immunol. 2012, 3.
(4)
Martini, M.; Santis, M. C. D.; Braccini, L.; Gulluni, F.; Hirsch,
E. PI3K/AKT Signaling Pathway and Cancer: An Updated Review. Ann.
Med. 2014, 46 (6), 372–383.
(21)
Hawkins, P. T.; Stephens, L. R. PI3K Signalling in Inflammaꢀ
(5)
Lymphocytic Leukemia. Semin. Oncol. 2016, 43 (2), 260–264.
(6) Park, S. J.; Lee, K. S.; Kim, S. R.; Min, K. H.; Moon, H.; Lee,
Brown, J. R. The PI3K Pathway: Clinical Inhibition in Chronic
tion. Biochim. Biophys. Acta BBA - Mol. Cell Biol. Lipids 2015, 1851 (6),
882–897.
(22)
(23)
Studies published 2016 or earlier are cited in reference 31.
Bhide, R. S.; Neels, J.; Qin, L.ꢀY.; Ruan, Z.; Stachura, S.;
M. H.; Chung, C. R.; Han, H. J.; Puri, K. D.; Lee, Y. C. Phosphoinositide
3ꢀKinase δ Inhibitor Suppresses Interleukinꢀ17 Expression in a Murine
Asthma Model. Eur. Respir. J. 2010, 36 (6), 1448–1459.
Weigelt, C.; Sack, J. S.; Stefanski, K.; Gu, X.; Xie, J. H.; Goldstine, C. B.;
Skala, S.; Pedicord, D. L.; Ruepp, S.; Dhar, T. G. M.; Carter, P. H.; Salterꢀ
Cid, L. M.; Poss, M. A.; Davies, P. Discovery and SAR of pyrrolo[2,1ꢀ
f][1,2,4]triazinꢀ4ꢀAmines as Potent and Selective PI3Kδ Inhibitors.
Bioorg. Med. Chem. Lett. 2016, 26 (17), 4256–4260.
(7)
Sadhu, C.; Dick, K.; Tino, W. T.; Staunton, D. E. Selective
Role of PI3Kδ in Neutrophil Inflammatory Responses. Biochem. Biophys.
Res. Commun. 2003, 308 (4), 764–769.
(8)
Brown, J. M.; Wilson, T. M.; Metcalfe, D. D. The Mast Cell
(24)
GonzalezꢀLopez de Turiso, F.; Hao, X.; Shin, Y.; Bui, M.;
and Allergic Diseases: Role in Pathogenesis and Implications for Therapy.
Clin. Exp. Allergy 2008, 38 (1), 4–18.
Campuzano, I. D. G.; Cardozo, M.; Dunn, M. C.; Duquette, J.; Fisher, B.;
Foti, R. S.; Henne, K.; He, X.; Hu, Y.ꢀL.; Kelly, R. C.; Johnson, M. G.;
Lucas, B. S.; McCarter, J.; McGee, L. R.; Medina, J. C.; Metz, D.; San
Miguel, T.; Mohn, D.; Tran, T.; Vissinga, C.; Wannberg, S.; Whittington,
D. A.; Whoriskey, J.; Yu, G.; Zalameda, L.; Zhang, X.; Cushing, T. D.
Discovery and in Vivo Evaluation of the Potent and Selective PI3Kδ Inꢀ
hibitors AMꢀ0687 and AMꢀ1430. J. Med. Chem. 2016, 59 (15), 7252–
7267.
(9)
Sriskantharajah, S.; Hamblin, N.; Worsley, S.; Calver, A. R.;
Hessel, E. M.; Amour, A. Targeting Phosphoinositide 3ꢀKinase δ for the
Treatment of Respiratory Diseases. Ann. N. Y. Acad. Sci. 2013, 1280 (1),
35–39.
(10)
Amour, A.; Barton, N.; Cooper, A. W. J.; Inglis, G.; Jamieson,
C.; Luscombe, C. N.; Morrell, J.; Peace, S.; Perez, D.; Rowland, P.; Tame,
C.; Uddin, S.; Vitulli, G.; Wellaway, N. Evolution of a Novel, Orally
Bioavailable Series of PI3Kδ Inhibitors from an Inhaled Lead for the
Treatment of Respiratory Disease. J. Med. Chem. 2016, 59 (15), 7239–
7251.
(25)
Marcoux, D.; Qin, L.ꢀY.; Ruan, Z.; Shi, Q.; Ruan, Q.; Weigelt,
C.; Qiu, H.; Schieven, G.; Hynes, J.; Bhide, R.; Poss, M.; Tino, J. Identifiꢀ
cation of Highly Potent and Selective PI3Kδ Inhibitors. Bioorg. Med.
Chem. Lett. 2017, 27 (13), 2849ꢀ2853.
(11)
Erra, M.; Taltavull, J.; Gréco, A.; Bernal, F. J.; Caturla, J. F.;
(26)
Patel, L.; Chandrasekhar, J.; Evarts, J.; Forseth, K.; Haran, A.
Gràcia, J.; Domínguez, M.; Sabaté, M.; Paris, S.; Soria, S.; Hernández, B.;
Armengol, C.; Cabedo, J.; Bravo, M.; Calama, E.; Miralpeix, M.; Lehner,
M. D. Discovery of a Potent, Selective, and Orally Available PI3Kδ Inhibꢀ
itor for the Treatment of Inflammatory Diseases. ACS Med. Chem. Lett.
2017, 8 (1), 118–123.
C.; Ip, C.; Kashishian, A.; Kim, M.; Koditek, D.; Koppenol, S.; Lad, L.;
Lepist, E.ꢀI.; McGrath, M. E.; Perreault, S.; Puri, K. D.; Villaseñor, A. G.;
Somoza, J. R.; Steiner, B. H.; Therrien, J.; Treiberg, J.; Phillips, G. Disꢀ
covery of Orally Efficacious Phosphoinositide 3ꢀKinase δ Inhibitors with
Improved Metabolic Stability. J. Med. Chem. 2016, 59 (19), 9228–9242.
(12)
Bartok, B.; Boyle, D. L.; Liu, Y.; Ren, P.; Ball, S. T.; Bugbee,
(27)
Patel, L.; Chandrasekhar, J.; Evarts, J.; Haran, A. C.; Ip, C.;
W. D.; Rommel, C.; Firestein, G. S. PI3 Kinase δ Is a Key Regulator of
Synoviocyte Function in Rheumatoid Arthritis. Am. J. Pathol. 2012, 180
(5), 1906–1916.
Kaplan, J. A.; Kim, M.; Koditek, D.; Lad, L.; Lepist, E.ꢀI.; McGrath, M.
E.; Novikov, N.; Perreault, S.; Puri, K. D.; Somoza, J. R.; Steiner, B. H.;
Stevens, K. L.; Therrien, J.; Treiberg, J.; Villaseñor, A. G.; Yeung, A.;
Phillips, G. 2,4,6ꢀTriaminopyrimidine as a Novel Hinge Binder in a Series
of PI3Kδ Selective Inhibitors. J. Med. Chem. 2016, 59 (7), 3532–3548.
(13)
Taher, T. E.; Parikh, K.; FloresꢀBorja, F.; Mletzko, S.; Isenꢀ
berg, D. A.; Peppelenbosch, M. P.; Mageed, R. A. Protein Phosphorylaꢀ
ACS Paragon Plus Environment