pyridinedicarboxaldehyde 4 and the tetraethylene glycol
bis(2-aminophenyl)ether 5 (Figure 1), onto dumbbell-shaped
Scheme 1
Figure 1
molecules containing dialkylammonium sites, and a similar
method was also adopted by other groups.9
In all these cases, the recognition sites have a common
dibenzylammonium moiety (i.e., in 1). However, no one has
studied the effect of different dialkylammonium structures,
e.g., a benzyl-aliphatic alkylammonium (2) or an arylben-
zylammonium (3), on the efficiency of the clipping reaction.
Herein, dumbbell-shaped molecules 3, 7, and 10 with
different ammonium structures were prepared, and their
clipping was investigated in detail. Synthesis of some new
supramolecular architectures by selective clipping was also
exploited.
reversible dynamic imine, which was reduced by NaBH4 in
the solution of THF and MeOH to give the kinetically stable
amine (C-NH). Protonation of the free amine with excess of
TFA and subsequent counterion exchange with saturated
NH4PF6 solution afforded the unsymmetrical dialkylammo-
niums 7 in 85% yield for three steps. The compound 10 with
dibenzylammonium and unsymmetrical benzyl-aliphatic alky-
lammonium units was synthesized through a similar method.
The diester 810 with Boc-protected alkyldiamines was
reduced by LiAlH4, and the obtained alcohol was oxidized
by pyridinium chlorochromate (PCC) to give the desired
dialdehyde 9, which was then treated with 3,5-dimethoxy-
benzylamine to afford the desired imine. After reduction with
NaBH4, the Boc protective groups were deprotected with
excess TFA, and the as-formed amines were simultaneously
protonated. Subsequent counterion exchange with saturated
NH4PF6 afforded 10 in 75% yield for three steps. Similarly,
compound 3 was prepared in 92% yield by condensation of
4-tert-butylaniline and 3,5-dimethoxybenzaldehyde followed
by reduction, protonation, and counterion exchange.
Scheme 1 outlines the synthesis of dumbbell-shaped
ammoniums 7 and 10. Condensation of 1,6-hexanediamine
with 3,5-dimethoxybenzaldehyde gave the corresponding
(4) (a) Jime´nez-Molero, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P.;
De Cian, A. Angew. Chem., Int. Ed. 2000, 39, 1295–1298. (b) Collin, J.-
P.; Dietrich-Buchecker, C.; Gavin˜a, P.; Jimenez-Molero, M. C.; Sauvage,
J.-P. Acc. Chem. Res. 2001, 34, 477–487. (c) Huang, T. J.; Brough, B.;
Ho, C.-M.; Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Tseng, H.-R.; Stoddart,
J. F.; Baller, M.; Magonov, S. Appl. Phys. Lett. 2004, 85, 5391–5393. (d)
Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.;
Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.;
Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F.
J. Am. Chem. Soc. 2005, 127, 9745–9759. (e) Wu, J.; Leung, K. C. F.;
Ben´ıtez, D.; Han, J. Y.; Cantrill, S. J.; Fang, L.; Stoddart, J. F. Angew.
Chem., Int. Ed. 2008, 47, 7470–7474.
(5) Berna´, J.; Leigh, D. A.; Lubomska, M.; Mendoza, S. M.; Pe´rez,
E. M.; Rudolf, P.; Teobaldi, G.; Zerbetto, F. Nat. Mater. 2005, 4, 704–
710.
The clipping reaction was first tested for 3 by mixing
together equimolar amounts of 3-5 in CD3CN, and the
clipping process was followed by 1H NMR spectroscopy.
A complicated mixture containing the oligomers (Schiff
base) of the condensation product of 4 and 5 was observed
after 1 day, but there was no evidence that a [2]rotaxane
was formed. In contrast, the clipping reaction of diben-
zylammonium type molecules (e.g., 1) under similar
conditions gave the respective rotaxanes in nearly quan-
titative yield.8 We then tested the clipping reaction of 7
(6) (a) Hernandez, R.; Tseng, H.-R.; Wong, J. W.; Stoddart, J. F.; Zink,
J. I. J. Am. Chem. Soc. 2004, 126, 3370–3371. (b) Nguyen, T. D.; Tseng,
H.-R.; Celestre, P. C.; Flood, A. H.; Liu, Y.; Stoddart, J. F.; Zink, J. I.
Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10029–10034. (c) Nguyen, T. D.;
Liu, Y.; Saha, S.; Leung, K. C. F.; Stoddart, J. F.; Zink, J. I. J. Am. Chem.
Soc. 2007, 129, 626–634. (d) Saha, S.; Leung, K. C. F.; Nguyen, T. D.;
Stoddart, J. F.; Zink, J. I. AdV. Funct. Mater. 2007, 17, 685–693.
(7) Yin, J.; Chi, C.; Wu, J. Chem.sEur. J. 2009, 15, 6050–6057.
(8) (a) Glink, P. T.; Oliva, A. I.; Stoddart, J. F.; White, A. J. P.; Williams,
D. J. Angew. Chem., Int. Ed. 2001, 40, 1870–1875. (b) Horn, M.; Ihringer,
J.; Glink, P. T.; Stoddart, J. F. Chem.sEur. J. 2003, 9, 4046–4054. (c)
Arico´, F.; Chang, T.; Cantrill, S. J.; Khan, S. I.; Stoddart, J. F. Chem.sEur.
J. 2005, 11, 4655–4666. (d) Leung, K. C.-F.; Arico´, F.; Cantrill, S. J.;
Stoddart, J. F. Macromolecules 2007, 40, 3951–3959. (e) Haussmann, P. C.;
Khan, S. I.; Stoddart, J. F. J. Org. Chem. 2007, 72, 6708–6713. (f) Wu, J.;
Leung, K. C.-F.; Stoddart, J. F. Proc. Natl. Acad. Sci. U.S.A. 2007, 104,
17266–17271. (g) Leung, K. C.-F.; Wong, W.-Y.; Arico´, F.; Haussmann,
P. C.; Stoddart, J. F. Org. Biomol. Chem. 2010, 8, 83–89.
1
with 2 equiv each of 4 and 5 in CD3CN. Based on H
NMR spectroscopic analysis, a dynamic8 [3]rotaxane was
formed together with some uncomplexed and partially
complexed dumbbell compounds and imine oligomers. The
mixture was treated with BH3·THF to reduce the dynamic
imine bond into the kinetically stable C-NH bond, and
(9) (a) Yoon, I.; Narita, M.; Goto, M.; Shimizu, T.; Asakawa, M. Org.
Lett. 2006, 8, 2341–2344. (b) Narita, M.; Yoon, I.; Aoyagi, M.; Goto, M.;
Shimizu, T.; Asakawa, M. Eur. J. Inorg. Chem. 2007, 4229–4237. (c) Zhou,
W.; Li, J.; He, X.; Li, C.; Lv, J.; Li, Y.; Wang, S.; Liu, H.; Zhu, D.
Chem.sEur. J. 2008, 14, 754–763. (d) Klivansky, L. M.; Koshkakaryan,
G.; Cao, D.; Liu, Y. Angew. Chem., Int. Ed. 2009, 48, 4185–4189.
(10) Ashton, P. R.; Baldoni, V.; Balzani, V.; Credi, A.; Hoffmann,
H. D. A.; Mart´ınez-D´ıaz, M.-V.; Raymo, F. M.; Stoddart, J. F.; Venturi,
M. Chem.sEur. J. 2001, 7, 3482–3493.
Org. Lett., Vol. 12, No. 8, 2010
1713