Journal of the American Chemical Society
Page 4 of 5
Chem. Int. Ed. 2012, 51, 7259. (d) Elsler, B.; Schollmeyer, D.; Dybalꢀ
la, K. M.; Franke, R.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2014,
53, 5210.
(11) Chen, X.; Cui, X.; Yang, F.; Wu, Y. Org. Lett. 2015, 17, 1445.
(12) Gao, H.; Ess, D. H.; Yousufuddin, M.; Kürti, L. J. Am. Chem.
Soc. 2013, 135, 7086.
(13) (a) Li, G.ꢀQ.; Gao, H.; Keene, C.; Devonas, M.; Ess, D. H.;
Kürti, L. J. Am. Chem. Soc. 2013, 135, 7414. (b) De, C. K.; Pesciaioli,
F.; List, B. Angew. Chem. Int. Ed. 2013, 52, 9293.
(14) (a) Gao, H.; Xu, Q.ꢀL.; Keene, C.; Yousufuddin, M.; Ess, D.
H.; Kürti, L. Angew. Chem. Int. Ed. 2016, 55, 566. (b) Wang, J.ꢀZ.;
Zhou, J.; Xu, C.; Sun, H.; Kürti, L.; Xu, Q.ꢀL. J. Am. Chem. Soc.
2016, 138, 5202.
the products are useful synthetic intermediates, as clearly
demonstrated by the synthesis of πꢀexpanded heteroaromatic
molecules including 7,12ꢀdioxa[8]helicene. Further expansion
of the scope of substrates and creation of more interesting
aromatic cores as well as asymmetric biaryl synthesis through
this strategy are now in progress.28
1
2
3
4
5
6
7
8
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, Xꢀray crystallographic analysis, photoꢀ
physical property, and spectral data. This material is available free
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(15) Reviews about transformations based on extended Pummerer
reactions: (a) Bur, S. K.; Padwa, A. Chem. Rev. 2004, 104, 2401. (b)
Feldman, K. S. Tetrahedron 2006, 62, 5003. (c) Smith, L. H. S.;
Coote, S. C.; Sneddon, H. F.; Procter, D. J. Angew. Chem. Int. Ed.
2010, 49, 5832. (d) Pulis, A. P.; Procter, D. J. Angew. Chem. Int. Ed.
2016, 55, 9842. (e) Shafir, A. Tetrahedron Lett. 2016, 57, 2673.
(16) (a) Akai, S.; Kawashita, N.; Satoh, H.; Wada, Y.; Kakiguchi,
K.; Kuriwaki, I.; Kita, Y. Org. Lett. 2004, 6, 3793. (b) Akai, S.; Kaꢀ
washita, N.; Wada, Y.; Satoh, H.; Alinejad, A. H.; Kakiguchi, K.;
Kuriwaki, I.; Kita, Y. Tetrahedron Lett. 2006, 47, 1881. (c) Huang,
X.; Maulide, N. J. Am. Chem. Soc. 2011, 133, 8510. (d) Huang, X.;
Patil, M.; Farès, C.; Thiel, W.; Maulide, N. J. Am. Chem. Soc. 2013,
135, 7312. (e) FernándezꢀSalas, J. A.; Eberhart, A. J.; Procter, D. J. J.
Am. Chem. Soc. 2016, 138, 790.
(17) (a) Kobatake, T.; Fujino, D.; Yoshida, S.; Yorimitsu, H.;
Oshima, K. J. Am. Chem. Soc. 2010, 132, 11838. (b) Ookubo, Y.;
Wakamiya, A.; Yorimitsu, H.; Osuka, A. Chem. Eur. J. 2012, 18,
12690. (c) Murakami, K.; Yorimitsu, H.; Osuka, A. Angew. Chem.
Int. Ed. 2014, 53, 7510.
(18) A review of chargeꢀaccelerated [3,3]ꢀsigmatropic rearrangeꢀ
ment: Huang, X.; Klimczyk, S.; Maulide, N. Synthesis 2012, 44, 175.
(19) Although 2ꢀhydroxyꢀ5ꢀmethylphenyl phenyl sulfoxide was reꢀ
ported to react with phenols to form biaryls through Pummerer proꢀ
cess, this sulfoxide is the only applicable substrate. Moreover, the
reactions inevitably yielded mixtures of orthoꢀ and paraꢀregioisomers
in regard with the phenol units since the transformation would proꢀ
ceed through FriedelꢀCrafts arylation of phenols with the reactive
thionium cation. See: Jung, M. E.; Kim, C.; von dem Bussche, L. J.
Org. Chem. 1994, 59, 3248.
(20) When paraꢀunsubstituted 1o reacted with 1ꢀnaphthol (2s), not
only the desired product 3os but the biaryl 3os' derived from [5,5]ꢀ
sigmatropic rearrangement was obtained in a ratio of 1.7:1. See Supꢀ
porting Information for more details.
(21) A similar 1,2ꢀshift was observed in the reaction of 2,6ꢀ
dimethyl(diacetoxyiodo)benzene. See: Ochiai, M.; Ito, T.; Takaoka,
Y.; Masaki, Y. J. Am. Chem. Soc. 1991, 113, 1319.
(22) Although the mechanism for the formation of 3dv' from 4 is
still unclear, simple thermal [1,3]ꢀaryl shift can be excluded because
no rearrangement of 4 took place even at 130 °C in the absence of
trifluoroacetic acid.
(23) Matsumura, T.; Niwa, T.; Nakada, M. Tetrahedron Lett. 2012,
53, 4313.
AUTHOR INFORMATION
Corresponding Author
*yori@kuchem.kyotoꢀu.ac.jp
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Numbers
JP23655037,
JP24685007,
JP25107002,
JP16H01019,
JP16H01149, and JP16H04109 as well as by ACTꢀC, JST. H.Y.
thanks Japan Association for Chemical Innovation, Tokuyama
Science Foundation, and The Naito Foundation for financial supꢀ
port. S.O. and K.F. acknowledge JSPS Predoctoral Fellowship.
REFERENCES
(1) (a) de Meijere, A.; Diederich, F. MetalꢀCatalyzed Crossꢀ
Coupling Reactions; WileyꢀVCH: Weinheim, Germany, 2004. (b)
Nishihara, Y. Applied CrossꢀCoupling Reactions; Springer: Heidelꢀ
berg, 2013. (c) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Leꢀ
maire, M. Chem. Rev. 2002, 102, 1359. (d) Alberico, D.; Scott, M. E.;
Lautens, M. Chem. Rev. 2007, 107, 174. (e) Suzuki, A. Angew. Chem.
Int. Ed. 2011, 50, 6722.
(2) Very selected reviews: (a) Dyker, G. Handbook of C–H Transꢀ
formation; WileyꢀVCH: Weinheim, Germany, 2005. (b) Yamaguchi,
J.; Itami, K. In MetalꢀCatalyzed CrossꢀCoupling Reactions and More,
de Meijere, A., Bräse, S., Oestreich, M., Eds.; WileyꢀVCH: Weinꢀ
heim, Germany, 2014; 1315. (c) Serigin, I. Y.; Gevorgyan, V. Chem.
Soc. Rev. 2007, 36, 1173. (d) Rossi, R.; Bellina, F.; Lessi, M.; Manziꢀ
ni, C.; Perego, L. A. Synthesis 2014, 46, 2833.
(3) Stuart, D. R.; Fagnou, K. Science 2007, 316, 1172.
(4) (a) Ashenhurst, J. A. Chem. Soc. Rev. 2010, 39, 540. (b) Yeung,
C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (c) Cho, S. H.; Kim,
J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (d) Liu,
C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Chem. Rev.
2015, 115, 12138.
(5) Selected reviews on Cuꢀcatalyzed asymmetric oxidative BINOL
synthesis: (a) Brunel, J. M. Chem. Rev. 2005, 105, 857. Update 1:
Brunel, J. M. Chem. Rev. 2007, 107, PR1. (b) Loxq, P.; Manoury, E.;
Poli, R.; Deydier, E.; Labande, A. Coord. Chem. Rev. 2016, 308, 131.
(6) (a) Guideline on the specification limits for residues of metal
catalysts of metal reagents; EMEA: London, UK, February, 2008. (b)
Guideline for elemental impurities, Q3D; Step 4 version; ICH: Noꢀ
vember, 2014.
(24) Reviews about C–H functionalisation using a traceless directꢀ
ing group strategy: (a) Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014,
43, 6906. (b) Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Belliꢀ
na, F. Tetrahedron 2016, 72, 1795.
(25) Becht, J.ꢀM.; Wagner, A.; Mioskowski, C. J. Org. Chem. 2003,
68, 5758.
(26) Charoonniyomporn, P.; Thongpanchang, T.; Witayakran, S.;
Thebtaranonth, Y.; Phillips, K. E. S.; Katz, T. J. Tetrahedron Lett.
2004, 45, 457.
(27) For selected reviews about helicenes: (a) Shen, Y.; Chen, C.ꢀF.
Chem. Rev. 2012, 112, 1463. (b) Gingras, M. Chem. Soc. Rev. 2013,
42, 968.
(7) Krebs, F. C.; Nyberg, R. B.; Jørgensen, M. Chem. Mater. 2004,
16, 1313.
(8) (a) Sun, C.ꢀL.; Shi, Z.ꢀJ. Chem. Rev. 2014, 114, 9219. (b) Naraꢀ
yan, R.; Matcha, K.; Antonchick, A. P. Chem. Eur. J. 2015, 21, 14678.
(9) (a) Dohi, T.; Ito, M.; Morimoto, K.; Iwata, M.; Kita, Y. Angew.
Chem. Int. Ed. 2008, 47, 1301. (b) Kita, Y.; Dohi, T. Chem. Rec.
2015, 15, 886.
(10) (a) Kirste, A.; Schnakenburg, G.; Stecker, F.; Fischer, A.;
Waldvogel, S. R. Angew. Chem. Int. Ed. 2010, 49, 971. (b) Kirste, A.;
Elsler, B.; Schnakenburg, G.; Waldvogel, S. R. J. Am. Chem. Soc.
2012, 134, 3571. (c) Morofuji, T.; Shimizu, A.; Yoshida, J.ꢀi. Angew.
(28) As a preliminary experiment, the coupling reaction of enantiꢀ
omerically pure 1b (>99% ee) with 2ꢀnaphthol (2t) was performed.
However, the corresponding binaphthyl 3bt was obtained with 9% ee
even at –40 °C. See Supporting Information for more details.
ACS Paragon Plus Environment