334
M. Chakravarty et al. / Polyhedron 33 (2012) 327–335
is symmetrical S,S0 bidentate, Pt–S1 2.342(2) Å, Pt–S2 2.413(2) Å,
and the second is monodentate, Pt–S3 2.302(2) Å. The P–S bond
lengths involving the Pt-bonded S-atoms are longer, P1–S1
2.024(2) Å, P1–S2 2.017(2) Å, P2–S3 2.062(2) Å, than the terminal
P–S bond length, 1.964(2) Å. Apparently the neutral phosphine,
Cy2PH, out-competes with the second bidentate chelate interaction
for the fourth coordination position on Pt(II). In another interesting
example, Pt[(EtO)2P(S)2](ppy) (ppy = 2-phenylpyridine), the dith-
iophosphonate binds in a symmetrical bidentate S,S0 mode with
Pt–S1 2.402(2) Å and Pt–S2 2.311(2) Å, and the ppyꢀ is orto-metal-
lated with Pt–N1 2.018(5) Å [60].
References
[1] I. Haiduc, in: J.A. Mc Cleverty, T.J. Meyer (Eds.), Comprehensive Coordination
Chemistry II, vol. 1, Elsevier, Oxford, 2008, p. 348 (Chapter 1.15).
[2] I. Haiduc, in: F.A. Devillanova (Ed.), Handbook of Chalcogen Chemistry: New
perspectives in Sulfur, Selenium and Tellurium, Royal Society of Chemistry,
Cambridge, 2007, p. 593.
[3] R.P. Davies, in: F.A. Devillanova (Ed.), Handbook of Chalcogen Chemistry: New
perspectives in Sulfur, Selenium and Tellurium, Royal Society of Chemistry,
Cambridge, 2007, p. 286.
[4] I. Haiduc, C. Silvestru, Coord. Chem. Rev. 173 (1998) 1.
[5] I. Haiduc, Coord. Chem. Rev. 158 (1997) 375.
[6] I. Haiduc, I.Y. Goh, Coord. Chem. Rev. 224 (2002) 151.
[7] K. Diemert, P. Haas, W. Kuchen, Chem. Ber. 111 (1978) 629.
[8] R.P. Davies, G. Martinelli, L. Patel, A.J.P. White, Inorg. Chem. 49 (2010) 4626.
[9] J.-M. Camus, R.T. Paine, unpublished results.
[10] E.J. Billo, EXCEL for Chemists, Wiley-VCH, New York, 2001.
[11] SAINT Plus, v.7.01, Bruker Analytical X-ray, Madison, WI, 2003.
[12] G.M. Sheldrick, SADABS, v.2.10, Program for Empirical Absorption Correction of
Area Detector Data, University of Gottingen, Gottingen, Germany, 2003, X-ray,
Madison, WI, 2001.
[13] G.M. Sheldrick, SHELXTL, v. 6.12, Bruker Analytical X-ray, Madison, WI, 2001.
[14] J.R. Klaehn, D.R. Peterman, M.K. Harrup, R.D. Tiiotson, T.A. Luther, J.D. Law, L.M.
Daniels, Inorg. Chim. Acta 361 (2008) 2522.
[15] M.M. Rauhut, H.A. Currier, V.P. Wystrach, J. Org. Chem. 26 (1961) 5133.
[16] G. Peters, J. Org. Chem. 27 (1962) 2198.
4. Conclusion
A convenient, high yield synthesis for a bifunctional pyridin-
2-ylmethylphosphinodithioic acid, 3-H(30), has been developed.
The 1H NMR spectra and X-ray crystal structure determination re-
veal that the strongly acidic phosphinodithioic acid proton mi-
grates from a sulfur atom to the basic pyridinyl N-atom resulting
in a zwitterionic structure, 30. Selected metal binding affinities
for 3-H(30) as a function of pH have been accessed spectrophoto-
metrically with La(III), Zn(II) and Cd(II) in water solution. Not sur-
prisingly, harder cations such as La(III) and Zn(II), under these
conditions, show low affinity for the neutral ligand. However, the
ligand shows modest coordination strength with the softer cation
Cd(II), and in water the ligand may be coordinated in its anionic
form as a bidentate N,S-chelator. On the other hand, the X-ray crys-
tal structure determination for the complex [Cd(30)Cl]2, formed in
CHCl3/MeOH solution, indicates that, under this condition, the li-
gand binds in its neutral 30 form utilizing an asymmetric bidentate
S,S0 chelate interaction. In contrast, the crystal structure for
[Pt(3ꢀ)2], shows that Pt(II) displaces the proton from 3-H(30), and
the resulting anionic ligand acts as a bidentate N,S-chelator.
Given the interesting acid–base and complexation properties of
the neutral dithioic acid, 3-H, its zwitterionic isomer, 30, and the
monoanion form, 3ꢀ, it is anticipated that a rich variety of coordi-
nation complex structures will evolve depending on the HSAB
character of the coordinated metal, metal coordination geometry
preferences, steric effects introduced by ligand substituent groups
and solvent. Further coordination chemistry with soft d-block me-
tal cations as well as with f-block cations in the absence of strongly
bonded water will be forthcoming. The latter will provide some
interesting experimental results to consider in light of the reveal-
ing computational studies reported by Boehme and Wipff [61,62]
regarding the formation of thiophosphoryl ligand complexes with
lanthanide ions.
[17] L. Maier, Top. Phosph. Chem. 2 (1965) 66.
[18] G.U. Spiegel, O. Stelzer, Z. Naturforsch. 42b (1987) 579.
[19] M.J. Green, K.J. Cavell, P.G. Edwards, J. Chem. Soc., Dalton (2000) 853.
[20] L. Horner, H. Hoffman, W. Klink, E. Hartmut, V.G. Toscano, Chem. Ber. 95
(1962) 581.
[21] S. Pailloux, C.E. Shirima, A.D. Ray, E.N. Duesler, K.A. Smith, R.T. Paine, J.R.
Klaehn, M.E. McIlwain, B.P. Hay, Dalton Trans. (2009) 7486.
[22] L.J. Caudle, E.N. Duesler, R.T. Paine, Inorg. Chim. Acta 110 (1985) 91.
[23] V.E. Bel’skii, R.F. Bakeeva, L.A. Kudryavtseva, A.M. Kurguzova, B.E. Ivanov, Izv.
Akad. Nauk SSSR Ser. Khim. 4 (1974) 1624.
[24] M.M. Crutchfield, C.H. Dungan, J.H. Letcher, V. Mark, J.R. Van Wazer, Top.
Phosph. Chem. 5 (1967) 1.
[25] C.A. Busacca, J.C. Lorenz, N. Grinberg, N. Haddad, M. Hrapchak, B. Latli, H. Lee,
P. Sabila, A. Saha, M. Sarvestani, S. Shen, R. Varsolona, X. Wei, C.H. Senanayake,
Org. Lett. 7 (2005) 4277.
[26] C.A. Busacca, R. Raju, N. Grinberg, N. Nizar, P. James-Jones, H. Lee, J.C. Lorenz, A.
Saha, C.H. Senanayake, J. Org. Chem. 73 (2008) 1524.
[27] C.A. Busacca, T. Bartholomeyzik, S. Cheekoori, R. Raju, M. Eriksson, S. Kapadia,
A. Saha, X. Zeng, C.H. Senanayake, Synlett (2009) 287.
[28] D.F. Steele, T.A. Stephenson, J. Chem. Soc., Dalton Trans. (1973) 2124.
[29] V. Gallo, M. Latronico, P. Mastrorilli, C.F. Nobile, G. Ciccarella, U. Englert, Eur. J.
Inorg. Chem. (2006) 2634.
[30] J.S. Casas, M.S. Garcia-Tasende, A. Sánchez, J. Sordo, E.M. Vázquez-López, E.E.
Castellano, J. Zuckerman-Schpector, Inorg. Chim. Acta 209 (1993) 137.
[31] W. Kuchen, H. Keck, Z. Naturforsch. 31b (1976) 437.
[32] S.E. Odinokov, A.A. Mashkovsky, V.P. Glazunov, A.V. Iogansen, B.V. Rassadin,
Spectrochim. Acta 32A (1976) 1355.
[33] Z. Dega-Szafran, E. Dulewicz, J. Chem. Soc., Perkin Trans. II (1983) 345.
[34] N.S. Golubev, S.N. Smirnov, V.A. Gindin, G.S. Denisov, H. Benedict, H.-H.
Limbach, J. Am. Chem. Soc. 116 (1994) 12055.
[35] N.S. Golubev, G.S. Denisov, S.N. Smirnov, D.N. Shchepkin, H.-H. Limbach, Z.
Physik. Chem. 196 (1996) 73.
[36] H.-H. Limbach, M. Pietrzak, S. Sharif, P.M. Tolstoy, I.G. Shenderovich, S.N.
Smirnov, N.S. Golubev, G.S. Denisov, Chem. Eur. J. 10 (2004) 5195.
[37] J.E. Hong, W.S. Shin, W.B. Jang, D.Y. Oh, J. Org. Chem. 61 (1996) 2199.
[38] G. Durrant, J.K. Sutherland, J. Chem. Soc., Perkin I (1972) 2582.
[39] D.L. Melton, D.G. VanDerveer, R.D. Hancock, Inorg. Chem. 45 (2006) 9306.
[40] N.E. Dean, R.D. Hancock, C.L. Cahill, M. Frisch, Inorg. Chem. 47 (2008) 2000.
[41] N.J. Williams, N.E. Dean, D.G. VanDerveer, R.C. Luckay, R.D. Hancock, Inorg.
Chem. 48 (2009) 7853.
[42] R.T. Gephart III, N.J. Williams, J.H. Reibenspies, A.S. De Sousa, R.D. Hancock,
Inorg. Chem. 47 (2008) 10342.
[43] R.T. Gephart III, N.J. Williams, J.H. Reibenspies, A.S. De Sousa, R.D. Hancock,
Inorg. Chem. 48 (2009) 8201.
Acknowledgements
Financial support for this study was provided by the U.S.
Department of Energy (DoE), Chemical Sciences, Geosciences and
Biosciences Office, Office of Basic Energy Sciences (Grant DE-
FG02-03ER15419) (RTP). In addition, funds from the National Sci-
ence Foundation assisted the purchase of the X-ray diffractometer
(CHE-0443580) and NMR spectrometers (CHE-0840523 and
0946690).
[44] G.M. Cockrell, G. Zhang, D.G. VanDerveer, R.P. Thummel, R.D. Hancock, J. Am.
Chem. Soc. 130 (2008) 1420.
[45] J.M. Hamilton, J.R. Whitehead, N.J. Williams, M. El Ojaimi, R.P. Thummel, R.D.
Hancock, Inorg. Chem. 50 (2011) 3785.
[46] A.E. Martell, R.M. Smith, Critical Stability Constant Database, 46, National
Institute of Science and Technology (NIST), Gaithersburg, MD, USA, 2003.
[47] M.I. Kabachnik, T.A. Mastryukova, A.E. Shipov, T.A. Malentyeva, Tetrahedron 9
(1960) 10.
[48] R.H. Zucal, J.A. Dean, T.H. Handley, Anal. Chem. 35 (1963) 988.
[49] R.G. Pearson, Coord. Chem. Rev. 100 (1990) 403.
[50] R.G. Pearson, Chemical Hardness, Wiley-VCH, Weinheim, 1997.
[51] A. Vos, R. Olthof, F. van Bolhuis, R. Botterweg, Acta Crystallogr. 19 (1965) 864.
[52] H. Vander Walt, A. Muller, W.E. van Zyl, Acta Cryst. (E) 66 (2010) 2146.
[53] D.J. Collins, P.F. Drygala, J.M. Swan, Tetrahedron Lett. 23 (1982) 1117.
[54] D.J. Collins, P.F. Drygala, J.M. Swan, Aust. J. Chem. 36 (1983) 2095.
Appendix A. Supplementary data
CCDC 832336, 832337, 832338 and 832339 contains the supple-
mentary crystallographic data for compounds (30), (60), [Cd(30)Cl2]2
and [Pt(3ꢀ)2]ꢁCHCl3. These data can be obtained free of charge via
bridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2
1EZ, UK; fax: (+44) 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk.