We selected an N-benzyloxycarbonyl (Cbz) imine 1a
derived from benzaldehyde according to the reported
method6 as a typical substrate tooptimizethe reaction con-
ditions (Scheme 1 and Table 1). The reaction of 1a (1.0 mmol,
0.15 M) and HCN prepared in situ by mixing (CH3)3SiCN
(3.0 mmol) and CH3OH (3.0 mmol) in tert-C4H9OCH3
at 0 °C smoothly proceeded in the presence of Ru[(S)-
phgly]2[(S)-binap] ((S,S,S)-3: 2.0 μmol; substrate-to-
catalyst molar ratio (S/C) = 500) and C6H5OLi (0.10 M in
THF, 2.0 μmol) to afford (R)-2a in 97% ee quantitatively
in 30 min (Table 1, entry 1). An even higher ee value of
98% was achieved at ꢀ20 °C (entry 2). A high level of
enantioselectivity was obtained in the reaction even at 25 °C
(entry 3).7 The enantioselectivity was decreased under the
substrate concentration higher than 0.15 M, although
the lower concentration little affected the stereoselective
outcome (entries 4 and 5). A comparable result was ob-
tained by using isolated HCN8 instead of the in situ formed
one, suggesting that the reaction is the net hydrocyana-
tion without substantial influence by the existing silicone
compounds (entry 6). A bimetallic salt [Li{Ru[(S)-phgly]2-
[(S)-binap]}]Cl ((S,S,S)-4)5c prepared from (S,S,S)-3 and
LiCl also acted as a highly enantioselective catalyst for this
reaction without additives, but the catalytic activity was
lower than that of the (S,S,S)-3/C6H5OLi system (entry 7 vs
entry 1). The high catalytic efficiency of (S,S,S)-3/C6H5OLi
system achieved complete conversion of the cyanation with
an S/C of 2500 (1 h) and 5000 (2 h) affording 2a in 95 and
96% ee, respectively (entries 8 and 9).
Table 1. Enantioselective Hydrocyanation of N-Cbz Aldimine 1aa
entry [1a]0, M S/Cb temp, °C time, h % yieldc % eed
1
0.15
0.15
0.15
0.45
0.05
0.15
0.15
0.15
0.15
500
500
0
ꢀ20
25
0
0.5
0.5
0.5
0.5
0.5
0.5
99
98
97
98
89
94
97
96
98
95
96
Scheme 1. Enantioselective Hydrocyanation of N-Cbz Aldimine
1a with the 3/C6H5OLi Catalyst System or 4
2
3
500
98
4
500
100
100
98
5
500
0
6e
7f
8g
9h
500
0
500
0
20
53
2500
5000
0
1
2
99
0
95
a Unless otherwise stated, reactions were conducted using 1a (1.0 mmol)
and HCN (3.0 mmol) in tert-C4H9OCH3 with a solid (S,S,S)-3 and
C6H5OLi (100 mM in THF). 3:C6H5OLi = 1:1. HCN was in situ
prepared from (CH3)3SiCN and CH3OH in a 1:1 ratio. b Substrate-to-
catalyst (3) molar ratio. c Isolated yield of 2a. d Determined by chiral
HPLC analysis. e Isolated HCN was used. f 4 was used instead of the 3/
C6H5OLi system as a catalyst. g Reaction using 5.1 mmol of 1a. h Reac-
tion using 10.0 mmol of 1a.
The enantioselective hydrocyanation catalyzed by the
(S,S,S)-3/C6H5OLi system or (S,S,S)-4 was applied to a
series of N-protected aldimines (Scheme 2). These results
are summarized in Table 2. Cbz was the most preferable
protective group in terms of stereoselectivity (Table 2,
entry 1). The cyanation of tert-butoxycarbonyl- and benzoyl-
protected aldimines, 1b and 1c, with the 3/C6H5OLi system
resulted in a somewhat lower ee of products (entries 2 and 3).
Both the reaction rate and enantioselectivity were significantly
decreased in the reaction of N-benzyl imine 1d (entry 4).
N-Cbz imines of 2-, 3-, and 4-methylbenzaldehydes, 1e,
1f, and 1h, were smoothly cyanated under the typical
conditions with the 3/C6H5OLi catalyst system to produce
the amino nitriles, 2e, 2f, and 2h, in the same ee of 97%
(3) For selected leading studies, see: (a) Ishitani, H.; Komiyama, S.;
Kobayashi, S. Angew. Chem., Int. Ed. 1998, 37, 3186–3188. (b) Sigman,
M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 5315–5316.
(c) Crueger, C. A.; Kuntz, K. W.; Dzierba, C. D.; Wirschun, W. G.;
Gleason, J. D.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 1999,
121, 4284–4285. (d) Ishitani, H.; Komiyama, S.; Hasegawa, Y.; Kobaya-
shi, S. J. Am. Chem. Soc. 2000, 122, 762–766. (e) Takamura, M.;
Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki, M. Angew. Chem.,
Int. Ed. 2000, 39, 1650–1652. (f) Porter, J. R.; Wirschun, W. G.; Kuntz,
K. W.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122,
2657–2658. (g) Keith, J. M.; Jacobsen, E. N. Org. Lett. 2004, 6, 153–155.
(h) Banphavichit, V.; Mansawat, W.; Bhanthumnavin, W.; Vilaivan, T.
Tetrahedron 2004, 60, 10559–10568. (i) Blacker, J.; Clutterbuck, L. A.;
Crampton, M. R.; Grosjean, C.; North, M. Tetrahedron: Asymmetry
2006, 17, 1449–1456. (j) Wang, J.; Hu, X.; Jiang, J.; Dou, S.; Huang, X.;
Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2007, 46, 8468–8470. (k)
Nakamura, S.; Nakashima, H.; Sugimoto, H.; Sano, H.; Hattori, M.;
Shibata, N.; Toru, T. Chem.;Eur. J. 2008, 14, 2145–2152. (l) Hatano,
M.; Hattori, Y.; Furuya, Y.; Ishihara, K. Org. Lett. 2009, 11, 2321–2324.
(m) Banphavichit, V.; Mansawat, W.; Bhanthumnavin, W.; Vilaivan, T.
Tetrahedron 2009, 65, 5849–5854. (n) Wang, J.; Wang, W.; Li, W.; Hu,
X.; Shen, K.; Tan, C.; Liu, X.; Feng, X. Chem.;Eur. J. 2009, 15, 11642–
11659. (o) Abell, J. P.; Yamamoto, H. J. Am. Chem. Soc. 2009, 131,
15118–15119. (p) Seayad, A. M.; Ramalingam, B.; Yoshinaga, K.;
Nagata, T.; Chai, C. L. L. Org. Lett. 2010, 12, 264–267. (q) Kaur, P.;
Pindi, S.; Wever, W.; Rajale, T.; Li, G. J. Org. Chem. 2010, 75, 5144–
5150. (r) Karimi, B.; Maleki, A.; Elhamifar, D.; Clark, J. H.; Hunt, A. J.
Chem. Commun. 2010, 46, 6947–6949.
(5) For asymmetric cyanation of aldehydes and R-keto esters with
combined catalysts of Ru(phgly)2(binap) and Li compounds, see:
(a) Kurono, N.; Arai, K.; Uemura, M.; Ohkuma, T. Angew. Chem.,
Int. Ed. 2008, 47, 6643–6646. (b) Kurono, N.; Uemura, M.; Ohkuma, T.
Eur. J. Org. Chem. 2010, 1455–1459. (c) Kurono, N.; Yoshikawa, T.;
Yamasaki, M.; Ohkuma, T. Org. Lett. 2011, 13, 1254–1257.
(6) (a) Petrini, M. Chem. Rev. 2005, 105, 3949–3977. (b) Tillman,
A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191–1193.
(7) Careful operations are required for hydrocyanation at room
temperature because of the high volatility of HCN.
(8) Glemser, O. In Handbook of Preparative Inorganic Chemistry,
2nd ed.; Brauer, G., Riley, R. F., Eds.; Academic Press: New York, 1963; pp
658ꢀ660.
(4) Kurono, N.; Nii, N.; Sakaguchi, Y.; Uemura, M.; Ohkuma, T.
Angew. Chem., Int. Ed. 2011, 50, 5541–5544.
Org. Lett., Vol. 14, No. 3, 2012
883