Crystal structure determinations
Bardaj´ı, M. J. Calhorda, P. J. Costa, P. G. Jones, A. Laguna, M. R.
Pe´rez and M. D. Villacampa, Inorg. Chem., 2006, 45, 1059; (i) S.-Y. Yu,
Q.-F. Sun, T. K.-M. Lee, E. C.-C. Cheng, Y.-Z. Li and V. W.-W. Yam,
Angew. Chem., Int. Ed., 2008, 47, 4551; (j) T. K.-Ming Lee, N. Zhu and
V. W. - W Ya m , J. Am. Chem. Soc., 2010, 132, 17646; (k) I. O. Koshevoy,
C.-L. Lin, A. J. Karttunen, M. Haukka, C.-W. Shih, P.-T. Chou, S. P.
Tunik and T. A. Pakkanen, Chem. Commun., 2011, 47, 5533.
3 S. Y. Ho, E. R. T. Tiekink, in Metallotherapeutic Drugs and Metal-
Based Diagnostic Agents: The Use of Metals in Medicine, ed. M. Gielen
and E. R. T. Tiekink, John Wiley & Sons Ltd, Chichester, UK, 2005,
ch. 26, p. 507.
Colourless crystals of HLPH and HLPMe, [Au3(HLPH)2Cl2]-
Cl·4MeOH (1·4MeOH) and [Au(HLPMe)2Cl]2 2 were mounted
on glass fibers and used for data collection. Crystal data were
collected at 100.0(1) K (HLPLH, 2) or 110(2) K (HLPMe) using a
Bruker X8 Kappa APEXII diffractometer or at 110(2) K using a
Bruker Smart CCD 1000 diffractometer (1·4MeOH). Graphite-
˚
monochromated Mo-Ka radiation (l = 0.71073 A) was used
4 M. A. Mansour, W. B. Connick, R. J. Lachicotte, H. J. Gysling and R.
Eisenberg, J. Am. Chem. Soc., 1998, 120, 1329.
5 (a) V. W.-W. Yam, C. K. Li and C. L. Chan, Angew. Chem., Int. Ed.,
1998, 37, 2857; (b) V. W.-W. Yam, C. L. Chan, C. K. Li and K. M. C.
Wong, Coord. Chem. Rev., 2001, 216–217, 173; (c) X. He, F. Herranz,
E. C.-C. Cheng, R. Vilar and V. W.-W. Yam, Chem.–Eur. J., 2010, 16,
9123.
throughout. The data for HLPH, HLPMe and 2 were processed
withAPEX239 orSAINT (1·4MeOH)andcorrectedfor absorption
using SADABS.40 The structures were solved by direct methods
using SHELXS-9741 and refined by full-matrix least-squares tech-
niques against F2 using SHELXL-97.41 Positional and anisotropic
atomic displacement parameters were refined for all non-hydrogen
atoms. Hydrogen atoms for HLPH and 1·4MeOH were included
in geometrically idealized positions and for HLPMe and 2 were
located in difference maps. The N–H hydrogen atoms were located
unambiguously from difference Fourier maps for all compounds.
In all compounds, the hydrogen atoms were included in refinement
as fixed contributions riding on attached atoms with isotropic
displacement parameters constrained to 1.2Ueq of their carrier
atoms. The lowest and highest peaks in the final difference Fourier
map were located close to the phosphorus atoms in the ligands
and close to the gold atoms in complex. Criteria of a satisfactory
complete analysis were the ratios of rms shift to standard deviation
less than 0.001 and no significant features in final difference maps.
Atomic scattering factors were obtained from International Tables
for Crystallography.42 Molecular graphics were prepared with
6 (a) F. Scherbaum, A. Grohmann, B. Huber, C. Kruger and H.
Schmidbaur, Angew. Chem., Int. Ed. Engl., 1988, 27, 1544; (b) H.
Schmidbaur, S. Cronje, B. Djordjevic and O. Schuster, Chem. Phys.,
2005, 311, 151; (c) H. Schmidbaur, A. Grohmann and M. E. Olmos,
Gold: Progress in Chemistry Biochemistry and Technology, ed. H.
Schmidbaur, Wiley, Chichester, 1999, p. 648; (d) W. Schneider, A. Bauer
and H. Schmidbaur, Organometallics, 1996, 15, 5445; (e) C. Hollatz, A.
Schier and H. Schmidbaur, J. Am. Chem. Soc., 1997, 119, 8115; (f) H.
Schmidbaur, Gold Bull., 2000, 33, 3; (g) H. Schmidbaur and A. Schier,
Chem. Soc. Rev., 2008, 37, 1931.
7 (a) D. Braga, F. Grepioni and G. R. Desiraju, Chem. Rev., 1998, 98,
1375; (b) S. R. Pathaneni and G. R. Desiraju, J. Chem. Soc., Dalton
Trans., 1993, 319; (c) M. A. Bennett, L. L. Welling and A. C. Willis,
Inorg. Chem., 1997, 36, 5670; (d) P. M. Van Calcar, M. M. Olmstead
and A. L. Balch, J. Chem. Soc., Chem. Commun., 1995, 1773; (e) P.
M. Van Calcar, M. M. Olmstead and A. L. Balch, Inorg. Chem., 1997,
36, 5231; (f) D. M. P. Mingos, J. Yau, S. Menzer and D. J. Williams,
Angew. Chem., 1995, 107, 2045; (g) C. P. McArdle, M. J. Irwin, M. C.
Jennings and R. J. Puddephatt, Angew. Chem., 1999, 111, 3571; (h) B.-
Chiau Tzeng, A. Schier and H. Schmidbaur, Inorg. Chem., 1999, 38,
3978.
ORTEP, implemented in PLATON,43 and with DIAMOND.44
A
summary of the crystal data, experimental details and refinement
results are listed in Table 1.
8 (a) V. W.-W. Yam and E. C.-C. Cheng, Gold Bull., 2001, 34, 20; (b) S.
Y. Ho, E. C.-Chin Cheng, E. R. T. Tiekink and V. W.-W. Yam, Inorg.
Chem., 2006, 45, 8165; (c) I. O. Koshevoy, E. S. Smirnova, M. Haukka,
A. Laguna, J. C. Chueca, T. A Pakkanen, S. P. Tunik, I. Ospino and O.
Crespo, Dalton Trans., 2011, 40, 7412.
Acknowledgements
9 J. S. Casas, E. E. Castellano, M. D. Couce, J. Ellena, A. Sa´nchez, J.
Sordo and C. Taboada, J. Inorg. Biochem., 2006, 100, 1858.
10 T. S. Lobana, S. Khanna and R. J. Butcher, Inorg. Chem. Commun.,
2008, 11, 1433.
Financial support from Xunta de Galicia (INCITE08PXIB-
203128PR).
11 A. Castin˜eiras, S. Dehnen, A. Fuchs, I. Garc´ıa-Santos and P. Sevillano,
Dalton Trans., 2009, 2731.
References
12 V. M. Leovac, B. Riba´r, G. Argay, A. Ka´lma´n and I. Brcˇeski, J. Coord.
Chem., 1996, 39, 11.
13 U. Abram, K. Ortner, R. Gust and K. Sommer, J. Chem. Soc., Dalton
Trans., 2000, 735.
14 D. You, S. O. Kang, J. Ko and M. Choi, Bull. Korean Chem. Soc., 1997,
18, 305.
15 (a) A. Castin˜eiras and R. Pedrido, Inorg. Chem., 2008, 47, 5534; (b) A.
Castin˜eiras and R. Pedrido, Inorg. Chem., 2009, 48, 4847.
16 A. Castin˜eiras and R. Pedrido, Dalton Trans., 2010, 39, 3572.
17 A. Castin˜eiras, R. Pedrido and G. Pe´rez-Alonso, Eur. J. Inorg. Chem.,
2008, 5106.
1 (a) M. C. Gimeno and A. Laguna, Silver and Gold. Comprehensive
Coordination Chemistry II, ed, J. A. MacCleverty and T. J. Meyer,
Elsevier, Pergamon, New York, 2003, vol. 6, p. 911; (b) Modern
Supramolecular Gold Chemistry, ed. A. Laguna, Wiley-WCH, 2008;
(c) H. E. Abdou, A. A. Mohamed, J. P. Fackler Jr, Gold Chemistry:
Applications and Future Directions in the Life Sciences, ed. F. Mohr,
Wiley-WCH, 2009; (d) R. J. Puddephatt, Chem. Soc. Rev., 2008, 37,
2012; (e) M. C. Gimeno and A. Laguna, Chem. Soc. Rev., 2008, 37,
1952; (f) E. R. T. Tiekink and J.-G. Kang, Coord. Chem. Rev., 2009, 253,
1627; (g) T. N. Hooper, M. Green and C. A. Russell, Chem. Commun.,
2010, 46, 2313; (h) A. Himmelspach, M. Finze and S. Raub, Angew.
Chem., Int. Ed., 2011, 50, 2628; (i) I. O. Koshevoy, M. Haukka, S. I.
Selivanov, S. P. Tunik and T. A. Pakkanen, Chem. Commun., 2010, 46,
8926.
2 (a) J. M. Forward, D. Bohmann, J. P. R. Fackler Jr. and J. Staples, Inorg.
Chem., 1995, 34, 6330; (b) V. W.-W. Yam and K. K.-W. Lo, Chem. Soc.
Rev., 1999, 28, 323; (c) V. W.-W. Yam, E. C. C. Cheng and Z. Y. Zhou,
Angew. Chem., Int. Ed., 2000, 39, 1683; (d) Y. Lee and R. Eisenberg,
J. Am. Chem. Soc., 2003, 125, 7778; (e) A. Pintado-Alba, H. De la
Riva, M. Niewenhuyzen, D. Bautista, P. R. Raithby, H. A. Sparkes, S.
J. Teat, J. M. Lo´pez-de-Luzuriaga and M. C. Lagunas, Dalton Trans.,
2004, 3459; (f) S.-K. Yip, E. C.-C. Cheng, L.-H. Yuan, N. Zhu and V.
W. - W. Ya m , Angew. Chem., Int. Ed., 2004, 43, 4954; (g) J. Chen, A.
A. Mohamed, H. E. Abdou, J. A. Krause Bauer, J. P. Fackler Jr., A.
E. Bruce and M. R. M. Bruce, Chem. Commun., 2005, 1575; (h) M.
18 W. J. Geary, Coord. Chem. Rev., 1971, 7, 81.
19 R. Pedrido, A. M. Gonza´lez-Noya, M. J. Romero, M. Mart´ınez-
Calvo, M. Va´zquez Lo´pez, E. Go´mez-Fo´rneas, G. Zaragoza and M.
R. Bermejo, Dalton Trans., 2008, 6776.
20 (a) D. Ferna´ndez, M. I. Garc´ıa-Seijo, M. Bardaj´ı, A. Laguna and M. E.
Garc´ıa-Ferna´ndez, Dalton Trans., 2008, 2633; (b) U. Monkowius, M.
Zabel and H. Yersin, Inorg. Chem. Commun., 2008, 11, 409.
21 (a) J. Easmon, G. Heinisch and W. Holzer, Heterocycles, 1989, 29,
1399; (b) D. X. West, C. S. Carlson, K. J. Bouck and A. E. Liberta,
Transition Met. Chem., 1991, 16, 271; (c) D. X. West, B. L. Mokijewski,
H. Gebremedhin and T. J. Romack, Transition Met. Chem., 1992, 17,
384.
22 G. A. Bogdamonic, A. Spasojevic´-de Bire´ and S. D. Zaric, Eur. J. Inorg.
Chem., 2002, 1599.
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 1363–1372 | 1371
©