346
J. Zhang et al. / Bioorg. Med. Chem. Lett. 22 (2012) 343–346
Table 2
of probe can be prepare to improve the lipophility so that it could
be permeated into the cell where it will be transformed into probe
by esterase in the cytosol.21
Relative fluorescent intensities of the compound (e) with various biologically
important metal cations
Entry
Metal cations
Relative intensity (If/I0)a
In conclusion, a novel fluorescence probe 2-[(N-ethyl carba-
zole)-3-sulfonyl ethylenediamine]-1-N,N-2-(2-methypyridy) has
been synthesized. It should be emphasized that the probe can be
easily synthesized in four steps from readily available starting
materials. The reactivity of the fluorescence probe with Zn2+ has
been examined in solution of physiological pH by fluorescence
spectroscopy. The UV/vis spectra of the compound in various sol-
vents were measured and the interactions between the probe
and solvents were also discussed. Finally, it should be noted that
the target fluorescent probe, due to its unique fluorescence proper-
ties and high selectivity, could be very promising for further re-
search on the Zn2+ analysis under physiological conditions. We
are currently in the process of modifying carbazole compound (e)
to shift its excitation and emission spectra in the visible to protect
biological sample from photodamage upon UV irradiation region as
well as to circumvent the spectral window with pronounced cellu-
lar autofluorescence and we will report the findings subsequently.
1
2
3
4
5
6
7
8
None
1.0
1.0
1.0
1.0
1.0
3.6
0.5
0.3
1.0
0.2
1.0
1.2
3.6
3.6
3.6
3.6
9 ꢀ 10ꢁ3 M Na+
9 ꢀ 10ꢁ3 M K+
9 ꢀ 10ꢁ3 M Ca2+
9 ꢀ 10ꢁ3 M Mg2+
1 ꢀ 10ꢁ5 M Zn2+
1 ꢀ 10ꢁ5 M Fe3+
1 ꢀ 10ꢁ5 M Cu2+
9
1 ꢀ 10ꢁ5 M Ni2+
10
11
12
13
14
15
16
1 ꢀ 10ꢁ5 M Co2+
1 ꢀ 10ꢁ5 M Mn2+
1 ꢀ 10ꢁ5 M Cd2+
1 ꢀ 10ꢁ5 M Zn2+ + 9 ꢀ 10ꢁ3 M Na+
1 ꢀ 10ꢁ5 M Zn2+ + 9 ꢀ 10ꢁ3 M K+
1 ꢀ 10ꢁ5 M Zn2+ + 9 ꢀ 10ꢁ3 M Ca2+
1 ꢀ 10ꢁ5 M Zn2+ + 9 ꢀ 10ꢁ3 M Mg2+
a
I0 and If indicate the average fluorescence intensities of fluorescence probe
compound (e) (1 ꢀ 10ꢁ5 M) in the absence and presence of various metal cations,
respectively.
Acknowledgments
350
300
250
200
150
100
50
This work was supported by the National Natural Science Foun-
dation of China(No. 21175086) and the Research Project Supported
by Shanxi Scholarship Council of China. All the authors express
their deep thanks.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
0
1. Maruyama, S.; Kikuchi, K.; Hirano, T.; Urano, Y.; Agano, T. J. Am. Chem. Soc.
2002, 124, 10650.
2. Zhou, Y.; Kima, H. N.; Yoon, J. Bioorg. Med. Chem. Lett. 2010, 20, 125.
3. Tang, B.; Huang, H.; Xu, K. H.; Tong, L. L.; Yang, G. W.; Liu, X.; An, L. G. Chem.
Commun. 2006, 3609.
4. Elizabeth, M. N.; Jacek, J.; Maryann, E. R.; Morgan, S.; Stephen, J. L. Inorg. Chem.
2006, 45, 24.
5. Fan, J. L.; Peng, X. J.; Wu, Y. K.; Lu, E. H.; Hou, J.; Zhang, H. B.; Zhang, R.; Fu, X. M.
J. Lumin. 2005, 114, 125.
3
4
5
6
pH
7
8
9
Figure 5. Effect of pH on the fluorescence intensity of compound (e) (1.0 ꢀ 10ꢁ5 M)
in the presence of Zn2+ (the concentration of Zn2+ was fixed at 1.0 ꢀ 10ꢁ5 M).
Measured at 25 °C in DMSO–H2O (1:9,v/v).
6. Mizukami, S.; Houjou, H.; Sugaya, K.; Koyama, E.; Tokuhisa, H.; Sasaki, T.;
Kanesato, M. Chem. Mater. 2005, 17, 50.
7. Chang, K. H.; Huang, C. C.; Liu, Y. H.; Hu, Y. H.; Chou, P. T.; Lin, Y. C. Dalton Trans.
2004, 11, 173.
and fluorophore upon excitation, which is known as the fluores-
cence quenching mechanism.19
Fluorescence turn-on by protonation has been a common prob-
lem for fluorescent Zn2+ sensors, because protonation diminishes
the sensitivity to zinc by increasing the background signal inten-
sity.20 Compared with some conventional Zn2+ probe, the fluores-
cence response of compound (e) is proved much less pH-sensitive
within the biologically relevant window. Figure 5 shows a slight
fluorescence decrease occurs when the solution pH increases from
6.0 to 8.0.
To determine the cell permeability of probe, cultured macro-
phages (RAW 264.7) will be incubated with phosphate-buffered
saline (PBS) containing the probe. The change of the fluorescences
could be tested using confocal laser scanning microscope by the
addition of Zn2+ and pyrithione, which is a zinc-selective iono-
phore, and followed by the TPEN, a high affinity zinc chelator. If
the cells were not stained, indicating that probe could not perme-
ate through the cell membrane. And then, a ethyl ester derivative
8. Huang, Z. L.; Li, N.; Lei, H.; Qiu, Z. R.; Wang, H. Z.; Zhong, Z. P.; Zhou, Z. H. Chem.
Commun. 2002, 2400.
9. Chen, C. H.; Lin, J. T.; Yeh, M. C. Tetrahedron 2006, 62, 8564.
10. Albrecht, K.; Kasai, Y.; Yamamoto, K. J. Inorg. Organomet. Polym. 2009, 19, 118.
11. Bai, G.; Li, J. F.; Li, D. X.; Dong, C.; Han, X. Y.; Lin, P. H. Dyes Pigments 2007, 75,
93.
12. Xu, Z. C.; Yang, W. B.; Dong, C. Bioorg. Med. Chem. Lett. 2005, 15, 4091.
13. Hojo, M.; Ueda, T.; Yamasaki, M.; Inoue, A.; Tokita, S.; Yanagita, M. Bull. Chem.
Soc. Jpn. 2002, 75, 1569.
14. Hojo, M.; Ueda, T.; Inoue, A. Bull. Chem. Soc. Jpn. 2002, 75, 2629.
15. Schulman, S. G.; Capomacchia, A. C.; Rietta, M. S. Anal. Chim. Acta 1971, 56, 91.
16. Chen, G. Z.; Huang, X. Z.; Zheng, Z. Z.; Xu, J. G.; Wang, Z. B. Fluorometric Analysis
(in Chinese), second ed.; Science Press: Beijing, 1990. pp. 15–17, and 39.
17. Baba, H.; Goodman, L.; Valenti, P. C. J. Am. Chem. Soc. 1966, 88, 5410.
18. Leermakers, P. A.; Rusakowicz, R.; Byers, G. W. J. Am. Chem. Soc. 1971, 93, 3263.
19. Rae, T. D.; Schmidt, P. J.; Pufahl, R. A.; Culotta, V. C.; O’Halloran, T. V. Science
1999, 284, 805.
20. Zhang, X. A.; Katherine, S. L.; Alan, J.; Stephan, J. L. PNAS 2007, 2104, 10780.
21. Satoko, M.; Kazuya, K.; Tomoya, H.; Yasuteru, U.; Tetsuo, N. J. Am. Chem. Soc.
2002, 124, 10650.