Job/Unit: O20408
/KAP1
Date: 18-06-12 15:52:36
Pages: 9
Dimethoxyphenyl-Substituted N-Heterocyclic Carbenes
Chem. 2008, 120, 3166–3216; Angew. Chem. Int. Ed. 2008, 47,
in vacuo and the resulting yellow oil was purified by flash column
chromatography (CH2Cl2 to CH2Cl2/MeOH, 95:5) on silica gel to
yield 20 (563 mg, 1.39 mmol, 86%). Rf (CH2Cl2/MeOH, 90:10) =
0.41 (UV).
3122–3172; d) T. Dröge, F. Glorius, Angew. Chem. 2010, 122,
7094–7107; Angew. Chem. Int. Ed. 2010, 49, 6940–6952; for the
use of NHCs as ligands in transition-metal catalysis and orga-
nometallic chemistry, see: e) S. P. Nolan, in: N-Heterocyclic
Carbenes in Synthesis (Ed.: S. P. Nolan), Wiley-VCH,
Weinheim, Germany, 2006; f) F. Glorius, in: N-Heterocyclic
Carbenes in Transition Metal Catalysis (Ed.: F. Glorius),
Springer, Berlin, 2007; g) E. A. B. Kantchev, C. J. O’Brien,
M. G. Organ, Angew. Chem. 2007, 119, 2824–2970; Angew.
Chem. Int. Ed. 2007, 46, 2768–2813; h) S. Würtz, F. Glorius,
Acc. Chem. Res. 2008, 41, 1523–1533; i) S. Díez-González, N.
Marion, S. P. Nolan, Chem. Rev. 2009, 109, 3612–3676.
Compound 20 (563 mg, 1.39 mmol, 1 equiv.) was dissolved in
acetonitrile (14 mL, 0.1 m) and BF3·Et2O (1.05 mL, 8.35 mmol,
6 equiv.) was added to the solution. After stirring the mixture at
70 °C for 3 h, additional BF3·Et2O (3 equiv.) was added. The mix-
ture was stirred at 70 °C for 16 h. After cooling to room tempera-
ture all the volatiles were removed in vacuo and methanol (14 mL,
0.1 m) and sodium iodide (1.04 g, 6.95 mmol, 5 equiv.) were added
to the residue. The mixture was heated at reflux for 30 min and
subsequently all the volatiles were removed in vacuo. The residue
was purified by flash column chromatography (CH2Cl2/MeOH,
97.5:2.5 to 90:10) on silica gel to obtain 9b (503 mg, 1.07 mmol,
77%) as a slightly yellow solid. Rf (CH2Cl2/MeOH, 95:5) = 0.20
[2]
[3]
a) F. Wöhler, J. Liebig, Ann. Pharm. 1832, 3, 249–282; b) A.
Lapworth, J. Am. Chem. Soc. 1903, 25, 995–1005.
For reviews on NHC organocatalysis, see: a) K. Zeitler, Angew.
Chem. 2005, 117, 7674–7678; Angew. Chem. Int. Ed. 2005, 44,
7506–7510; b) N. Marion, S. Díez-González, S. P. Nolan, An-
gew. Chem. 2007, 119, 3046–3058; Angew. Chem. Int. Ed. 2007,
46, 2988–3000; c) D. Enders, O. Niemeier, A. Henseler, Chem.
Rev. 2007, 107, 5606–5655; d) E. M. Phillips, A. Chan, K. A.
Scheidt, Aldrichim. Acta 2009, 42, 55–66; e) J. L. Moore, T.
Rovis, Top. Curr. Chem. 2010, 291, 77–144; f) H. U. Vora, T.
Rovis, Aldrichim. Acta 2011, 44, 3–11; g) K. Hirano, I. Piel, F.
Glorius, Chem. Lett. 2011, 40, 786–791; h) V. Nair, R. S.
Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose, V. Sreeku-
mar, Chem. Soc. Rev. 2011, 40, 5336–5346; i) A. T. Biju, N.
Kuhl, F. Glorius, Acc. Chem. Res. 2011, 44, 1182–1195; j) P.-
C. Chiang, J. W. Bode, TCI Mail 2011, 149, 2–17; k) D. T. Co-
hen, K. A. Scheidt, Chem. Sci. 2012, 3, 53–57; l) X. Bugaut, F.
Glorius, Chem. Soc. Rev. 2012, DOI: 10.1039/C2CS15333E.
For selected most recent advances, see: a) A. T. Biju, M. Pad-
manaban, N. E. Wurz, F. Glorius, Angew. Chem. 2011, 123,
8562–8565; Angew. Chem. Int. Ed. 2011, 50, 8412–8415; b) T. Y.
Jian, L. He, C. Tang, S. Ye, Angew. Chem. 2011, 123, 9270–
9273; Angew. Chem. Int. Ed. 2011, 50, 9104–9107; c) X. Fang,
X. Chen, H. Lv, Y. R. Chi, Angew. Chem. 2011, 123, 11986–
11989; Angew. Chem. Int. Ed. 2011, 50, 11782–11785; d) L.
Candish, D. W. Lupton, Chem. Sci. 2012, 3, 380–383; e) D. A.
DiRocco, E. L. Noey, K. N. Houk, T. Rovis, Angew. Chem.
2012, 124, 2441–2444; Angew. Chem. Int. Ed. 2012, 51, 2391–
2394; f) C. A. Rose, S. Gundala, C.-L. Fagan, J. F. Franz, S. J.
Connon, K. Zeitler, Chem. Sci. 2012, 3, 735–740; g) J. Mahat-
thananchai, J. Kaeobamrung, J. W. Bode, ACS Catal. 2012, 2,
494–503.
For reviews, see: a) H. Stetter, H. Kuhlmann, in: Organic Reac-
tions (Ed.: L. A. Paquette), Wiley, New York, 1991, vol. 40, pp.
407–496; b) J. Read de Alaniz, T. Rovis, Synlett 2009, 1189–
1207.
a) K. Hirano, A. T. Biju, I. Piel, F. Glorius, J. Am. Chem. Soc.
2009, 131, 14190–14191; b) A. T. Biju, N. E. Wurz, F. Glorius,
J. Am. Chem. Soc. 2010, 132, 5970–5971; c) I. Piel, M. Stein-
metz, K. Hirano, R. Fröhlich, S. Grimme, F. Glorius, Angew.
Chem. 2011, 123, 5087–5091; Angew. Chem. Int. Ed. 2011, 50,
4983–4987; d) I. Piel, M. D. Pawelczyk, K. Hirano, R.
Fröhlich, F. Glorius, Eur. J. Org. Chem. 2011, 5475–5484; e)
D. A. DiRocco, T. Rovis, Angew. Chem. 2011, 123, 8130–8132;
Angew. Chem. Int. Ed. 2011, 50, 7982–7983; f) M. Padmana-
ban, A. T. Biju, F. Glorius, Org. Lett. 2011, 13, 5624–5627.
(UV). FTIR (ATR): ν = 3188, 3168, 3016, 2982, 2943, 2841, 1676,
˜
1596, 1551, 1484, 1434, 1330, 1301, 1262, 1110, 1085, 1051, 1023,
1
959, 783, 753, 728, 651, 605 cm–1. H NMR (300 MHz, CDCl3): δ
= 8.92 (t, J = 1.5 Hz, 1 H), 7.63 (d, J = 1.5 Hz, 2 H), 7.45 (t, J =
8.6 Hz, 2 H), 6.74 (d, J = 8.6 Hz, 4 H), 3.90 (s, 12 H) ppm. 13C
NMR (75 MHz, CDCl3): δ = 154.1, 138.9, 132.5, 124.1, 111.8,
+
104.9, 56.9 ppm. HRMS (ESI): calcd. for C19H21N2O4 341.1496;
found 341.1499.
General Procedure for the Catalysis
Hydroacylation of Cyclopropene 2: A flame-dried Schlenk tube was
charged with aldehyde (1 equiv.), K2CO3 (1 equiv.), and the NHC
precursor (x mol-%). Dry THF (0.25 m) and 3-methyl-3-phenylcy-
clopropene (2; 1.5 equiv.) were added through a syringe. The tube
was sealed under argon and stirred at 40 °C for 24 h. The reaction
mixture was filtered through a short pad of silica and all the vola-
tiles of the filtrate were removed in vacuo. The yield was either
measured by 1H NMR spectroscopy using CH2Br2 as internal stan-
dard or by isolation of the acylcyclopropane by flash column
chromatography on silica gel (pentane/ethyl acetate, 98:2).
[4]
Intramolecular Hydroacylation of 23: A flame-dried Schlenk tube
was charged with the aldehyde 23 (1 equiv.) and the NHC precursor
(x mol-%) in a glovebox. Dry dioxane (0.5 m) and DBU (2x mol-
%) were added through a syringe. The tube was sealed and stirred
at 120 °C for 2 h. The reaction mixture was filtered through a short
pad of silica and all the volatiles were removed in vacuo. The yield
was either measured by 1H NMR spectroscopy using CH2Br2 as
internal standard or by isolation of the chromanone 24 by flash
column chromatography on silica gel (pentane/ethyl acetate, 95:5).
[5]
[6]
Supporting Information (see footnote on the first page of this arti-
cle): Details of the synthesis of the starting materials, description
of the catalysis, NMR spectra, and crystallographic data.
Acknowledgments
We are indebted to the Fonds der Chemischen Industrie for a pre-
doctoral fellowship (M. S.). We thank Nathalie E. Wurz for helpful
discussions, Karin Gottschalk for skillful technical assistance, and
the Deutsche Forschungsgemeinschaft (DFG) (SPP 1179) for gen-
erous financial support. The research of F. G. was supported by
the Alfried Krupp von Bohlen und Halbach Foundation (Alfried
Krupp Prize for Young University Teachers).
[7]
[8]
a) A. T. Biju, F. Glorius, Angew. Chem. 2010, 122, 9955–9958;
Angew. Chem. Int. Ed. 2010, 49, 9761–9764; b) X. Bugaut, F.
Liu, F. Glorius, J. Am. Chem. Soc. 2011, 133, 8130–8133.
F. Liu, X. Bugaut, M. Schedler, R. Fröhlich, F. Glorius, Angew.
Chem. 2011, 123, 12834–12838; Angew. Chem. Int. Ed. 2011,
50, 12626–12630.
[9]
K. J. Hawkes, B. F. Yates, Eur. J. Org. Chem. 2008, 5563–5570.
[10]
[1] a) A. J. Arduengo III, Acc. Chem. Res. 1999, 32, 913–921; b)
D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem.
Rev. 2000, 100, 39–92; c) F. E. Hahn, M. C. Jahnke, Angew.
By using K3PO4 instead of K2CO3 and changing the solvent
from THF to 1,4-dioxane, the yield was increased to 98% and
the ee to 94%.
Eur. J. Org. Chem. 0000, 0–0
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
7