192
C. Xu et al. / Polyhedron 33 (2012) 185–193
component of 8 was assessed by dividing the normalized z-scan
data obtained in the close-aperture configuration by those obtained
in the open-aperture configuration. The nonlinear refractive compo-
nent plotted with the filled squares in Fig. S4 (down) was assessed
by dividing the normalized z-scan data obtained under the closed
aperture configuration by the normalized z-scan data obtained un-
der the open aperture configuration. The valley and peak occur at
about equal distances from the focus. It can be seen that the differ-
ence in valley–peak positions dZV–P is 7.52 mm and the difference
between normalized transmittance values at valley and peak posi-
tions dTV–P = 0.41 for 8. These results suggest an effectively strong
third-order optical nonlinearity [31,32]. The solid curve is an eye
guide for comparison where the effective nonlinear refractivity n2
value estimated therefore is 3.47 ꢂ 10ꢀ9 esu for 8. Similarly, the so-
lid line in Fig. S5 (up) is the theoretical curve calculated with
plementary data associated with this article can be found, in the
References
[1] (a) J.M. McConnachie, J.A. Ibers, Inorg. Chem. 30 (1991) 1770;
(b) M. Berardini, T. Emge, J.G. Brennan, J. Am. Chem. Soc. 115 (1993) 8501;
(c) J. Arnold, Prog. Inorg. Chem. 43 (1995) 353;
(d) W.A. Howard, T.M. Trnka, G. Parkin, Inorg. Chem. 34 (1995) 5900;
(e) J.J. Ellison, K. Ruhlandt-Senge, H.H. Hope, P.P. Power, Inorg. Chem. 34
(1995) 49;
(f) M.D. Nyman, M.J. Hampden-Smith, E.N. Duesler, Inorg. Chem. 36 (1997)
2218;
(g) C.W. Liu, C.M. Hung, B.K. Santra, H.C. Chen, H.H. Hsueh, J.C. Wang, Inorg.
Chem. 42 (2003) 3216.
[2] (a) S.P. Wuller, A.L. Seligson, G.P. Mitchell, J. Arnold, Inorg. Chem. 34 (1995)
4854;
a
2 = 7.13 ꢂ 10ꢀ4 cm/W for the concentration of 1.48 ꢂ 10ꢀ4 M for
(b) M. Berardini, T.J. Emge, J.G. Brennan, Inorg. Chem. 34 (1995) 5327;
(c) A.K. Verma, T.B. Rauchfuss, Inorg. Chem. 34 (1995) 6199;
(d) W.F. Liaw, C.H. Lai, S.J. Chiou, Y.C. Horng, C.C. Chou, M.C. Liaw, G.H. Lee,
S.M. Peng, Inorg. Chem. 34 (1995) 3755;
(e) C.W. Liu, C.M. Hung, B.K. Santra, Y.H. Chu, J.C. Wang, Z. Lin, Inorg. Chem. 43
(2004) 4306;
9 in a DMF solution. The difference in valley-peak positions dZV–P
is 8.24 mm and the difference dTV–P between normalized transmit-
tance values at valley and peak positions is 0.51 for 9 [see Fig. S5
(down)]. The solid curve is an eye guide for comparison where
the effective nonlinear refractivity n2 value estimated therefore is
5.61 ꢂ 10ꢀ9 esu for 9.
(f) C.W. Liu, H.C. Haia, C.M. Hung, B.K. Santra, B.J. Liaw, Z.Y. Lin, J.C. Wang,
Inorg. Chem. 43 (2004) 4464.
[3] (a) C.P. Gerlach, V. Christou, J. Arnold, Inorg. Chem. 35 (1996) 2758;
(b) A.K. Verma, T.B. Rauchfuss, S.R. Wilson, Inorg. Chem. 34 (1995) 3072;
(c) A.R. Strzelecki, C.L. Likar, B.A. Helsel, T. Utz, M.C. Lin, P.A. Bianconi, Inorg.
Chem. 33 (1994) 5188;
It may be seen that the NLO behaviors of the heptanuclear het-
erobimetallic complexes 8 and 9 are comparable to those of the
(d) B. Kersting, B. Krebs, Inorg. Chem. 33 (1994) 3886;
(e) T. Ikada, S. Kuwata, Y. Mizobe, M. Hidai, Inorg. Chem. 37 (1998) 5793;
(f) Z.H. Li, S.W. Du, X.T. Wu, Inorg. Chem. 43 (2004) 4776;
(g) J.F. Jiang, R.H. Holm, Inorg. Chem. 44 (2005) 1068.
[4] (a) M.A. Ansari, J.C. Bollinger, J.A. Ibers, J. Am. Chem. Soc. 115 (1993) 3838;
(b) Y.F. Cheng, T.J. Emge, J.G. Brennan, Inorg. Chem. 35 (1996) 342;
(c) X. Zhong, M. Han, Z. Dong, T.J. White, W. Knoll, J. Am. Chem. Soc. 125 (2003)
8589;
neutral tetranuclear complex [(
hexanuclear complex [( 3-WSe4)2Ag4(
(diphenylphosphino)methane) [37], and obviously stronger than
those of the neutral linear trinuclear complexes [( -WSe4)
(AgPCy3)2] (Cy = cyclohexyl) [37] and [( -WSe4)(AgPPh3){Ag
(PPh3)2}] [38] and cubane-like tetrahedral complexes [( 3-X)(l3
l
3-WSe4)Ag3(
l3-I)(l-dppm)2] and
l
l-dppm)3] (dppm = bis
l
l
l
-
(d) X. Zhong, Y. Feng, W. Knoll, M. Han, J. Am. Chem. Soc. 125 (2003) 13559;
(e) S.S. Garje, M.C. Copsey, M. Afzaal, P. O’Brien, T. Chivers, J. Mater. Chem. 16
(2006) 4542.
WSe4)Ag3(PR3)3] (X = Cl, I; R = Ph, Cy) with relative less-nuclearity
[37,39]. The NLO properties of higher nuclearity metal clusters are
usually larger than those of the lower nuclearity complexes. It is
thus understood that polynuclearity of heterobimetallic clusters
may effectively enhance nonlinear optical absorptive and refrac-
tive effects. The positive values of nonlinear refractions in 8 and
9 indicate that there are self-focusing effects in NLO behaviors of
the present heptanuclear complexes [40]. Comparing the NLO data
of 8 and 9, both non-linear absorption and refractive effects of sele-
nium-containing complex 9 are obviously stronger than those of
sulfur-containing complex 8. Such significant improvements of
non-linear optical effects by replacing skeletal selenium atoms
with sulfur atom simply the heavy atom effect, which is similar
[5] (a) W. Hirpo, S. Dhingra, A.C. Sutorik, M.G. Kanatzidis, J. Am. Chem. Soc. 115
(1993) 1597;
(b) T.C. Deivaraj, J.-H. Park, M. Afzaal, P. O’Brien, J.J. Vittal, Chem. Commun.
(2001) 2304;
(c) K.K. Banger, J. Cowen, A.F. Hepp, Chem. Mater. 13 (2001) 3827;
(d) K.K. Banger, M.H.-C. Jin, J.D. Harris, P.E. Fanwick, A.F. Hepp, Inorg. Chem. 42
(2003) 7713;
(e) M.T. Ng, J.J. Vittal, Inorg. Chem. 45 (2006) 10147;
(f) M.T. Ng, C.B. Boothroyd, J.J. Vittal, J. Am. Chem. Soc. 128 (2006) 7118;
(g) S.S. Lee, K.W. Seo, J.P. Park, S.K. Kim, I.W. Shim, Inorg. Chem. 46 (2007)
1013.
[6] (a) M. Hidai, S. Kuwata, Y. Mizobe, Acc. Chem. Res. 33 (2000) 46;
(b) P.V. Rao, R.H. Holm, Chem. Rev. 104 (2004) 527;
(c) S.C. Lee, R.H. Holm, Chem. Rev. 104 (2004) 1135.
[7] (a) K. Mitchell, J.A. Ibers, Chem. Rev. 102 (2002) 1929;
(b) H. Grisaru, O. Palchik, A. Gedanken, V. Palchik, M.A. Slifkin, A.M. Weiss,
Inorg. Chem. 42 (2003) 7148;
to those observed in the cubane-like structure complexes [(l3
-
X)(l
3-MQ4)M03(PPh3)3] (M = Mo, W; M0 = Cu, Ag; Q = S, Se; X = Cl,
Br, I) [41]. More examples of neutral argento-selenometallic and
argento-tellurometallic heterobimetallic complexes with tailored
structures and composition will be further designed and synthe-
sized in this laboratory.
(c) S. Banerjee, T.J. Emge, J.G. Brennan, Inorg. Chem. 43 (2004) 6307;
(d) J.J. Vittal, M.T. Ng, Acc. Chem. Res. 39 (2006) 869;
(e) C. Zimmermann, C.E. Anson, F. Weigend, R. Clérac, S. Dehnen, Inorg. Chem.
44 (2005) 5686.
[8] (a) H.W. Hou, X.Q. Xin, S. Shi, Coord. Chem. Rev. 153 (1996) 25;
(b) Q.F. Zhang, W.H. Leung, X.Q. Xin, Coord. Chem. Rev. 224 (2002) 35;
(c) Y.Y. Niu, H.G. Zheng, H.W. Hou, X.Q. Xin, Coord. Chem. Rev. 248 (2004) 169.
[9] (a) A. Müller, E. Diemann, R. Jostes, H. Bögge, Angew. Chem., Int. Ed. Engl. 20
(1981) 934;
Acknowledgments
(b) S. Dehnen, A. Eichhöfer, D. Fenske, Eur. J. Inorg. Chem. (2002) 279;
(c) Q.F. Zhang, Z. Yu, J. Ding, Y. Song, A. Rothenberger, D. Fenske, W.H. Leung,
Inorg. Chem. 45 (2006) 5187;
(d) B. Bechlars, I. Issac, R. Feuerhake, R. Clerac, O. Fuhr, D. Fenske, Eur. J. Inorg.
Chem. (2008) 1632.
This project was supported by the Natural Science Foundation
of China (20871002) and the Program for New Century Excellent
Talents in University of China (NCET-08-0618).
[10] (a) B.J. Coe, N.R.M. Curati, Comments Inorg. Chem. 25 (2004) 147;
(b) C. Zhang, Y.L. Song, X. Wang, Coord. Chem. Rev. 251 (2007) 111.
[11] W. Hirpo, A.C. Sutorik, S. Dhingra, M.G. Kanatzidis, Polyhedron 13 (1994) 2797.
[12] (a) X. Wang, T.L. Sheng, R.B. Fu, S.M. Hu, S.C. Xiang, L.S. Wang, X.T. Wu, Inorg.
Chem. 45 (2006) 5236;
Appendix A. Supplementary data
CCDC 827733, 827734, 827735, 827736, 827737, 827738,
827739 and 827740 contain the supplementary crystallographic
data for 1ꢁ2dmf, 2ꢁ2dmf, 3ꢁ2dmf, 5, 6, 7, 8ꢁ0.5dmf and 9ꢁ0.5dmf.
graphic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK;
fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk. Sup-
(b) L.S. Wang, T.L. Sheng, X. Wang, D.B. Chen, S.M. Hu, R.B. Fu, S.C. Xiang, X.T.
Wu, Inorg. Chem. 47 (2008) 4054.
[13] (a) M. Berardini, T. Emge, J.G. Brennan, J. Am. Chem. Soc. 116 (1994) 6941;
(b) M. Brewer, J. Lee, J.G. Brennan, Inorg. Chem. 34 (1995) 5919;
(c) M. Berardini, T.J. Emge, J.G. Brennan, Inorg. Chem. 34 (1995) 5327.
[14] (a) A. Kornienko, S. Banerjee, G.A. Kumar, R.E. Riman, T.J. Emge, J.G. Brennan, J.
Am. Chem. Soc. 127 (2005) 14008;
(b) K. Norton, T.J. Emge, J.G. Brennan, Inorg. Chem. 46 (2007) 4060;