Table 4 The two-photon absorption cross-section (GM) of complexes
1–4 in neutral, protonated and deprotonated forms
Scheme (AoE/P-03/08) of the University Grants Committee of
Hong Kong SAR, China.
Complex
Neutrala
Deprotonatedb,c
1
2
3
4
12
9
30
6
22.9 (0.025)
24.9 (0.058)
16.2 (0.012)
23.2 (0.009)
Notes and references
1 (a) D. Sandrini, M. Masestri, V. Balzani, L. Chassot and A.
von Zelewsky, J. Am. Chem. Soc., 1987, 109, 7720–7724; (b) T.-
C. Cheung, K.-K. Cheung, S.-M. Peng and C.-M. Che, J. Chem.
Soc., Dalton Trans., 1996, 1645–1651; (c) J. H. K. Yip and J. J.
Vittal, Inorg. Chem., 2000, 39, 3537–3543; (d) H. Yersin and D.
Donges, Top. Curr. Chem., 214, 81–186; (e) W. Lu, M. C. W. Chan,
K.-K. Cheung and C.-M. Che, Organometallics, 2001, 20, 2477–
2486.
a Measured in DMF (concentration = 1 ¥ 10-4 M). b Measured in DMF with
5% triethylamine. c Emission (single-proton) quantum yield are shown in
blanket.
2 (a) W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, C.-M. Che and S.-T. Lee, J.
Am. Chem. Soc., 2004, 126, 4958–4971; (b) P. K.-M. Siu, D.-L. Ma and
C.-M. Che, Chem. Commun, 2005, 1025–1027; (c) S. C. F. Kui, S. S.-Y.
Chui, C.-M. Che and N. Zhu, J. Am. Chem. Soc., 2006, 128, 8297–8309;
(d) J. A. G. Williams, S. Develay, D. L. Rochester and L. Murphy, Coord.
Chem. Rev., 2008, 252, 2596–2611; (e) S. W. Botchway, M. Charnley,
J. W. Haycock, A. W. Parker, D. L. Rochester, J. A. Weinstein and
J. A. G. Williams, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 16071–
16076; (f) C.-M. Che, H.-F. Xiang, S. S.-Y. Chui, Z.-X. Xu, V. A. L.
Roy, J. J. Yan, W.-F. Fu, P. T. Lai and I. D. Williams, Chem.–Asian
J., 2008, 3, 1092–1103; (g) P. Wu, L.-M. Wong, D.-L. Ma, G. S.-M.
Tong, K.-M. Ng and C.-M. Che, Chem.–Eur. J., 2009, 15, 3652–3656;
(h) Q. Zhao, F. Li and C. Huang, Chem. Soc. Rev., 2010, 39, 3007–
3030.
molecule-1) (Table 4). To examine whether the deprotonated form
of these cycloplatinated luminophores also possess multi-photon
excitation and emission properties, we have also measured the
two-photon absorption cross-section of the four cycloplatinated
complexes in their deprotonated states in DMF (concentration =
1 ¥ 10-4 M) (Table 4 and Fig. S4, ESI†). These deprotonated
luminophores also possess modest two-photon absorption cross-
section ranging from 16.2 to 24.9 GM.
Conclusions
3 (a) V. M. Miskowski, V. H. Houlding, C.-M. Che and Y. Wang, Inorg.
Chem., 1993, 32, 2518–2524; (b) S.-W. Lai and C.-M. Che, Top. Curr.
Chem, 2004, 241, 27–63.
To conclude, we have developed two new C,N,N-type ligands that
contain the more basic imidazolyl donors for the cyclometalation
of d8 Pt(II) centres. The two structural related ligands, HL2
and HL3, possess different electronic properties because of the
difference in the substitution position of the phenylpyridyl moiety
on the imidazole. All the resultant cycloplatinated complexes,
[Pt(L2)Cl] (1) and [Pt(L3)Cl] (2), as well as their cationic derviatives,
[Pt(L2)(PPh3)]+ (3) and [Pt(L3)(PPh3)]+ (4), are luminescent at
room temperature in solutions. The acid–base properties of the
1-imidazolyl-NH functionality on both L2 and L3 are able to
bring about spectroscopic and luminescent responses in the cyclo-
platinated luminophores. The measured ground state and excited
state pKa values are 4.33 and 4.26, respectively, for Pt(L2)(PPh3)]+
(3), and 5.08 and 5.00, respectively, for [Pt(L3)(PPh3)]+ (4). These
pKa values, especially that of 4, are physiological relevant. While
normal cytoplasmic pH of live cells is in the range of 7.0–7.5,
pH in selected intracellular organelles of the endosomal and
secretory compartments is much lower due to the action of
vacuolar-type proton pumps.24 For example, pH of lysosomes can
be as low as 4.7–4.8.25 The specific pH luminescent responses
of 3 and 4 can be further explored to bring about “switch-
on” luminescent imaging of these more acidic organelles in live
cells.
4 L. J. Andrews, J. Phys. Chem., 1979, 83, 3203–3209.
5 (a) F. Neve Crispini and S. Campagna, Inorg. Chem., 1997, 36, 6150–
6151; (b) S.-W. Lai, M. C. W. Chan, K.-K. Cheung and C.-M. Che,
Organometallics, 1999, 18, 3327–3336; (c) W. Sun, Z.-X. Wu, Q.-Z.
Yang, L.-Z. Wu and C.-H. Tung, Appl. Phys. Lett., 2003, 82, 850–
852; (d) W. Lu, B.-X. Mi, M. C. W. Chan, Z. Hui, C.-M. Che,
N. Zhu and S.-T. Lee, J. Am. Chem. Soc., 2004, 126, 4958–4971;
(e) W. Sun, H. Zhu and P. M. Barron, Chem. Mater, 2006, 18, 2602–
2610.
6 (a) J. Fornie´s, V Sicilia, C. Larraz, J. A. Camerano, A. Martin, J. M.
Casas and A. C. Tsipis, Organometallics, 2010, 29, 396–1405; (b) S.
Develay, O. Blackburn, A. L. Thompson and J. A. G. Williams, Inorg.
Chem, 2008, 47, 11129–11142.
7 (a) C.-K. Koo, B. Lam, S.-K. Leung, M. H.-W. Lam and W.-Y. Wong,
J. Am. Chem. Soc, 2006, 128, 16434–16435; (b) C.-K. Koo, Y.-M. Ho,
C.-F. Chow, M. H.-W. Lam, T.-C. Lau and W.-Y. Wong, Inorg. Chem,
2007, 46, 3603–3612; (c) C.-K. Koo, K.-L. Wong, C. W.-Y. Man, H.-L.
Tam, S.-W. Tsao, K.-W. Cheah and M. H.-W. Lam, Inorg. Chem, 2009,
48, 7501–7503.
8 C.-K. Koo, L. K.-Y. So, K.-L. Wong, Y.-M. Ho, Y.-W. Lam, M. H.-W.
Lam, K.-W. Cheah, C. C.-W. Cheng and W.-M. Kwok, Chem. Eur. J,
2010, 16, 3942–3950.
9 D. Lo¨tscher, S. Rupprecht, H. Stoeckli-Evans and A. Zelewsky,
Tetrahedron: Asymmetry, 2000, 11, 4341–4357.
10 D. R. Coulson, Inorg. Synth., 1990, 28, 107.
11 D. D. Perrin, B. Dempsey, Buffers for pH and metal ion control,
Chapman and Hall, London, 1974.
12 J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 75, 991.
13 SAINT Reference Manual, Siemens Energy and Automation, Madison,
WI, 1994–1996.
All the new cyclometalated platinum(II) complexes are capa-
ble of producing two-photon excited 3MLCT emissions from
femto-second near-IR (lexcitation = 750 nm) two-photon excitation
with modest two-photon absorption cross-sections for imaging
purposes. This two-photon excitability, combined with their pH
luminescent responses, make complexes 3 and 4 potentially useful
luminophores for bio-labeling and live-cell imaging.
14 G. M. Sheldrick, SADABS, Empirical Absorption Correction Program,
University of Go¨ttingen, Germany, 1997.
15 G. M. Sheldrick, SHELXTLTM Reference Manual, version 5.1, Siemens,
Madison, WI, 1997.
16 (a) W. J. Eilbeck, F. Holmes, G. G. Phillips and A. E. Underhill, J.
Chem,. Soc. (A), 1967, 1161–1166; (b) W. J. Eilbeck and F. Holmes, J.
Chem,. Soc. (A), 1967, 1777–1782.
17 V. I. Minkin, S. F. Pozharskii, Y. A. Ostroumov, In Chemistry of
Heterocyclic Compounds, Vol. 2, pp. 413–420.
18 D. J. Cardenas, A. M. Echavarren and M. C. Ramirez de Arellano,
Organometallics, 1999, 18, 3337–3341.
19 (a) D. W. Randall, S. D. George, B. Hedman, K. O. Hodgson,
K. Fujisawa and E. I. Solomon, J. Am. Chem. Soc, 2000, 122,
Acknowledgements
This work is jointly funded by a CERG grant (CityU 101208)
from the Research Grant Council and the Areas of Excellence
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 1792–1800 | 1799
©