To study the potential of these readily available ligands in
greater depth, we also tested them in the asymmetric hydro-
genation of several other minimally functionalized olefins
(Fig. 2). The enantioselectivities are among the best observed
for these substrates.2 As expected Ir–L6a also provides high
levels of enantioselectivities (99% ee) in the reduction of other
trisubstituted E-olefins (S2 and S3). Notably, high enantio-
selectivities can also be obtained for the more demanding
Z isomer S4, which usually reacts with much lower enantio-
selectivity than that of the corresponding E-isomer S1. Ir–L6a
also proved to be an excellent catalyst for the hydrogenation
of a,b-unsaturated ester S5 (98% ee). It should be noted that
this novel class of catalyst precursors also proved to be highly
effective in one of the most challenging classes of substrates—
the 1,1-disubstituted terminal olefins.12 Thus, excellent enantio-
selectivities (98–99% ee) were achieved in the reduction of
aromatic and heteroaromatic terminal substrates S6 and S7
under mild reaction conditions (1 bar of H2).
2 For recent reviews, see: (a) K. Kallstrom, I. Munslow and P. G.
¨ ¨
Andersson, Chem.–Eur. J., 2006, 12, 3194; (b) S. J. Roseblade and
A. Pfaltz, Acc. Chem. Res., 2007, 40, 1402; (c) T. L. Church and
P. G. Andersson, Coord. Chem. Rev., 2008, 252, 513; (d) X. Cui and
K. Burgess, Chem. Rev., 2005, 105, 3272; (e) O. Pamies,
´
P. G. Andersson and M. Dieguez, Chem.–Eur. J., 2010, 16,
14232.
3 (a) A. Lighfoot, P. Schnider and A. Pfaltz, Angew. Chem., Int. Ed.,
1998, 37, 3897; (b) D.-R. Hou, J. H. Reibenspies, T. J. Colacot and
K. Burgess, Chem.–Eur. J., 2001, 7, 5391; (c) W. Tang,
W. Wang and X. Zhang, Angew. Chem., Int. Ed., 2003, 42,
943; (d) P. G. Cozzi, F. Menges and S. Kaiser, Synlett,
2003, 833; (e) D. Liu, W. Tang and X. Zhang, Org. Lett., 2004,
6, 513.
4 R. H. Crabtree, Acc. Chem. Res., 1979, 12, 331.
5 See for instance: (a) W. J. Drury III, N. Zimmermann, M. Keenan,
M. Hayashi, S. Kaiser, R. Goddard and A. Pfaltz, Angew. Chem.,
Int. Ed., 2004, 43, 70; (b) M. C. Perry, X. Cui, M. T. Powell,
D.-R. Hou, J. H. Reibenspies and K. Burgess, J. Am. Chem. Soc.,
2003, 125, 5391; (c) J. Blankestein and A. Pfaltz, Angew. Chem.,
Int. Ed., 2001, 40, 4445; (d) S. Kaiser, S. P. Smidt and A. Pfaltz,
Angew. Chem., Int. Ed., 2006, 45, 5194; (e) K. Kallstrom,
¨
¨
C. Hedberg, P. Brandt, P. Bayer and P. G. Andersson, J. Am.
Chem. Soc., 2004, 126, 14308; (f) M. Dieguez, J. Mazuela,
O. Pamies, J. J. Verendel and P. G. Andersson, J. Am. Chem.
Soc., 2008, 130, 7208; (g) M. Dieguez, J. Mazuela, O. Pamies,
J. J. Verendel and P. G. Andersson, Chem. Commun., 2008, 3888;
(h) J. Mazuela, J. J. Verendel, M. Coll, B. Schaffner, A. Borner,
In summary, we have described the first successful application
of non-N-donor heterodonor ligands—thioether-phosphite
ligands—in the Ir-catalyzed asymmetric hydrogenation of
several minimally functionalized olefins. These ligands combine
the advantages of phosphite, thioether and sugar cores: that is
to say, they are readily available from cheap feedstocks, are
more resistant to oxidation than phosphines and phosphinites,
and are more stable than oxazolines. In addition, they can be
easily tuned in the sugar core, the thioether and biaryl phosphite
moieties so that their effect on catalytic performance can be
explored. By carefully selecting the ligand components, we
obtained high enantioselectivities under unoptimized reaction
conditions. This is an exceptional ligand family, which is able
to reduce in excellent ee’s (up to 99%) a range of E- and Z-
trisubstituted and disubstituted substrate types. These results
provide a new class of ligands for the highly enantio-
selective Ir-catalyzed hydrogenation of a wide range of
substrates and open up the enantioselective Ir-catalyzed hydro-
genation of minimally functionalized olefins to a type of ligand
other than N-donor heterodonor ligands. Mechanistic studies
are currently under way and further applications are being
looked into.
´
´
¨
¨
P. G. Andersson, O. Pamies and M. Die
2009, 131, 12344; (i) J. Mazuela, A. Paptchikhine, O. Pamies,
P. G. Andersson and M. Dieguez, Chem.–Eur. J., 2010, 16, 4567;
´
guez, J. Am. Chem. Soc.,
´
(j) J. Zhao and K. Burgess, J. Am. Chem. Soc., 2009, 131, 13236;
(k) A. Wang, R. P. A. Fraga, E. Hormann and A. Pfaltz,
Chem.–Asian J., 2011, 6, 599; (l) S.-M. Lu and C. Bolm, Angew.
Chem., Int. Ed., 2008, 47, 8920; (m) W.-J. Lu, Y.-W. Chen and
X.-L. Hou, Adv. Synth. Catal., 2010, 352, 103.
6 For representative examples on the use of P,S-ligands in asymmetric
hydrogenation of enamides and ketones, see: (a) D. A. Evans,
F. E. Michael, J. S. Tedrow and K. R. Campos, J. Am. Chem.
Soc., 2003, 125, 3534; (b) E. Guimet, M. Dieguez, A. Ruiz and
´
C. Claver, Dalton Trans., 2005, 2557; (c) E. Hauptman, P. J. Fagan
and W. Marshall, Organometallics, 1999, 18, 2061; (d) E. Le Roux,
R. Malacea, E. Manoury, R. Poli, L. Gonsalvi and M. Peruzzini,
Adv. Synth. Catal., 2007, 349, 309.
7 For a recent review on the use of P,S-ligands in asymmetric
catalysis, see: R. Malacea and E. Manoury, in Phosphorus Ligands
in Asymmetric Catalysis, ed. A. Borner, Wiley-VCH, Weinheim,
2008, vol. 2, pp. 749–784.
¨
8 See for example: (a) M. Die
2004, 104, 3189; (b) S. Woodward, M. Die
Chem. Rev., 2010, 254, 2007; (c) P. W. N. M. van Leeuwen, P. C.
J. Kamer, C. Claver, O. Pamies and M. Dieguez, Chem. Rev., 2011,
111, 2077; (d) C. Claver, O. Pamies and M. Dieguez, in Phosphorus
´
guez, O. Pamies and C. Claver, Chem. Rev.,
´
guez and O. Pamies, Coord.
´
We thank the Spanish Government for providing grants
Consolider Ingenio Intecat-CSD2006-0003, CTQ2010-15835,
and 2008PGIR/07 and 2008PGIR/08, the Catalan Government
for grant 2009SGR116, and the ICREA Foundation for
´
Ligands in Asymmetric Catalysis, ed. A. Borner, Wiley-VCH,
Weinheim, 2008, vol. 2, pp. 506–528.
¨
9 A. M. Masdeu-Bulto
Coord. Chem. Rev., 2003, 242, 159.
10 Ligands L1–L3a have been previously synthesized, see: O. Pamies,
M. Dieguez, G. Net, A. Ruiz and C. Claver, Organometallics, 2000,
, M. Dieguez, E. Martin and M. Gomez,
´ ´ ´
providing M. Dieguez and O. Pamies with financial support
´
through the ICREA Academia awards. We thank Prof.
P.G. Andersson, Uppsala University, for his useful comments
´
19, 1488.
11 (a) K. P. R. Kartha, Tetrahedron Lett., 1986, 27, 3415;
(b) A. I. Vogel, Vogel’s Textbook of Practical Organic Chemistry,
Longman, New York, 5th edn, 1994; (c) P. A. Levene and
A. L. Raymond, J. Biol. Chem., 1933, 102, 317; (d) D. H.
Hollenberg, R. S. Klein and J. J. Fox, Carbohydr. Res., 1978,
67, 491; (e) G. Ritzmann, R. S. Klein, D. H. Hollenberg and
J. J. Fox, Carbohydr. Res., 1975, 39, 227; (f) T. Tsutsumi, Y. Kawai
and Y. Ishido, Carbohydr. Res., 1975, 39, 293.
Notes and references
1 (a) Asymmetric Catalysis in Industrial Scale: Challenges, Approaches
and Solutions, ed. H. U. Blaser and E. Schmidt, Wiley, Weinheim,
Germany, 2003; (b) I. Ojima, Catalytic Asymmetric Synthesis,
Wiley-VCH, New York, 2000; (c) J. M. Brown, in Comprehensive
Asymmetric Catalysis, ed. E. N. Jacobsen, A. Pfaltz and
H. Yamamoto, Springer-Verlag, Berlin, 1999, vol. I, pp. 121–182;
(d) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
New York, 1994.
12 For these substrates, few catalytic systems have provided high
enantioselectivities, see ref. 2e. So, the development of highly
enantioselective Ir-catalysts is therefore still important.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 9215–9217 9217