Journal of the American Chemical Society
Article
derive from strictamine (6), via reduction with zinc in methanolic
sulfuric acid (see ref 6a).
(18) Zhang, M.; Huang, X.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2009,
synthetic (+)-scholarisine A (1) were confirmed by single-crystal X-ray
analysis. Crystallization of (+)-59 with chloroform led to co-
crystallization of chloroform in the unit cell, which in turn permitted
confirmation of the absolute configuration of (+)-59 by X-ray analysis,
exploiting the heavy-atom anomalous dispersion of chlorine. See the
Supporting Information for CIF files of (+)-44, (−)-50, (−)-51, and
(+)-56. See ref 23 for CIF files of (−)-33, (−)-34, (+)-41, (−)-42,
(−)-43, (+)-45, (+)-59, (+)-74, and totally synthetic (+)-scholarisine
A (1).
131, 6013−6020.
(19) Zi, W.; Xie, W.; Ma, D. J. Am. Chem. Soc. 2012, 134, 9126−
9129.
(20) Arai, H.; Hirasawa, Y.; Rahman, A.; Kusumawati, I.; Zaini, N. C.;
Sato, S.; Aoyama, C.; Takeo, J.; Morita, H. Bioorg. Med. Chem. 2010,
18, 2152−2158.
(21) Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel,
M.; Girotra, R. N.; Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.;
Zahler, R.; Deshpande, P. P.; Pullockaran, A.; Hagan, D. L.; Morgan,
N.; Taylor, J. R.; Obermeier, M. T.; Humphreys, W. G.; Khanna, A.;
Discenza, L.; Robertson, J. G.; Wang, A.; Han, S.; Wetterau, J. R.;
Janovitz, E. B.; Flint, O. P.; Whaley, J. M.; Washburn, W. N. J. Med.
Chem. 2008, 51, 1145−1149.
(22) (a) Kamarajan, P.; Sekar, N.; Mathuram, V.; Govindasamy, S.
Biochem. Int. 1991, 25, 491−498. (b) Jagetia, G. C.; Baliga, M. S.;
Venkatesh, P.; Ulloor, J. N.; Mantena, S. K.; Genebriera, J.; Mathuram,
V. J. Pharm. Pharmacol. 2005, 57, 1213−1219.
(23) Adams, G. L.; Carroll, P. J.; Smith, A. B., III J. Am. Chem. Soc.
2012, 134, 4037−4040.
(24) Garg recently reported the use of a similar lactone (see ref 9).
We initially considered lactone (27) while contemplating a Fischer
annulation approach inspired by the work of Levy and Dolby. See:
(a) Laronze, J. Y.; Laronze, J.; Patigny, D.; Levy, J. Terahedron Lett
1986, 27, 489−492. (b) Dolby, L. J.; Esfandiari, Z. J. Org. Chem. 1972,
37, 43−46. (c) Dolby, L. J.; Nelson, S. J. J. Org. Chem. 1973, 38,
2882−2887.
(25) For an overview on acid-promoted decomposition of
unsaturated α-diazo ketones, see: Smith, A. B., III; Dieter, R. K.
Tetrahedron 1981, 37, 2407−2439.
(26) Attempts to form the indolenine quaternary center of the
akuammiline family have proven difficult. See: (a) Bennasar, M. L.;
Zulaica, E.; Lopez, M.; Bosch, J. Tetrahedron Lett. 1988, 29, 2361−
2364. (b) Bosch, J.; Bennasar, M. L. Synlett 1995, 587−596.
(c) Bennasar, M. L.; Zulaica, E.; Ramirez, A.; Bosch, J. J. Org. Chem.
1996, 61, 1239−1251 Also see refs 24b and 24c..
(27) Danieli, B.; Lesma, G.; Mauro, M.; Palmisano, G.; Passarella, D.
J. Org. Chem. 1995, 60, 2506−2513. Also see: Danieli, B.; Lesma, G.;
Mauro, M.; Palmisano, G.; Passarella, D. Tetrahedron 1994, 50, 8837−
8852. Danieli, B.; Lesma, G.; Mauro, M.; Palmisano, G.; Passarella, D.
Tetrahedron: Asymmetry 1990, 1, 793−800.
(28) Ochiai, H.; Ohtani, T.; Ishida, A.; Kishikawa, K.; Yamamoto, S.;
Takeda, H.; Obata, T.; Nakai, H.; Toda, M. Eur. J. Med. Chem. 2004,
39, 555−571.
(29) For use of 4 Å sieves during lipase transesterification with
methyl ester solvent, see: Ottolina, G.; Carrea, G.; Riva, S. J. Org.
Chem. 1990, 55, 2366−2369. For an overview of enzymatic
asymmetrization of meso-compounds, see: Danieli, B.; Lesma, G.;
Passarella, D.; Riva, S. Chiral Synthons via Enzyme-Mediated
Asymmetrization of Meso-Compounds. In Advances in the Use of
Synthons in Organic Chemistry; Dondoni, A., Ed.; JAI Press Inc.:
Greenwich, CT, 1993; Vol. 1, pp 143−219.
(30) For use of a diamine to quench the reaction of tosyl chloride,
see: Morita, J.; Nakatsuji, H.; Misaki, T.; Tanabe, Y. Green Chem. 2005,
7, 711−715.
(31) Extreme caution should be employed when using potassium
cyanide, especially when in a DMSO solution. See: Potassium
Cyanide. e-EROS Encyclopedia of Reagents for Organic Synthesis
2012).
(32) (a) Hughes, T. V.; Hammond, S. D.; Cava, M. P. J. Org. Chem.
1998, 63, 401−402. (b) Katritzky, A. R.; Akue-Gedu, R.; Vakulenko, A.
V. Arkivoc 2007, iii, 5−12. (c) Katritzky, A. R.; Brzezinski, J. Z.; Lam, J.
N. Rev. Roum. Chim. 1991, 36, 573−580.
(33) The structures of (−)-33, (−)-34, (+)-41, (−)-42, (−)-43,
(+)-44, (+)-45, (−)-50, (−)-51, (+)-56, (+)-59, (+)-74, and totally
(34) (a) Kasai, T.; Watanabe, H.; Mori, K. Bioorg. Med. Chem. 1993,
1, 67−70. (b) OBrien, P.; Tournayre, J. Tetrahedron 1997, 53, 17527−
17542.
(35) Rhodium on alumina has been shown to tolerate the oxirane
moiety. See: (a) Tarbell, D. S.; West, R. L.; McNally, J. G.;
McCorkindale, N. J.; Kunstmann, M.; Carman, R. M.; Cremer, S. E.;
Cross, A. D.; Huffman, K. R.; Varino, H. L.; Rosowsky, A.; Chapman,
D. D. J. Am. Chem. Soc. 1961, 83, 3096−3113. For reduction of
nitriles to primary amines using rhodium on alumina, see:
(b) Freifelder, M. J. Am. Chem. Soc. 1960, 82, 2386−2389. Bridged
azapolycyclic alcohols have been constructed via intramolecular
expoxide opening by an amide. See: (c) Schultz, R.; Staas, W.;
Spurlock, L. J. Org. Chem. 1973, 38, 3091−3093. Also see ref 24c.
(36) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155−4156.
(37) For use of acetic acid as a solvent for nitrile hydrogenation
employing rhodium on alumina, see: Galan, A.; De Mendoza, J.;
Prados, P.; Rojo, J.; Echavarren, A. M. J. Org. Chem. 1991, 56, 452−
454.
(38) Sajiki, H.; Hattori, K.; Hirota, K. Chem.Eur. J. 2000, 6, 2200−
2204.
(39) Benzoyl phenylhydrazine has been used in an attempt to avoid
pyrazole or pyrazolone formation during Fischer indole syntheses with
acyclic 1,3-dicarbonyl compounds. See: Mills, K.; Alkhawaja, K.;
Alsaleh, F.; Joule, J. A. J. Chem. Soc., Perkin Trans. 1 1981, 636−641.
(40) Welch, W. M. Synthesis 1977, 645−646.
(41) N-Aroylindoles have been isolated upon Fischer syntheses with
aroyl phenylhydrazines. See: Yamamoto, H. J. Org. Chem. 1967, 32,
3693−3695.
(42) For similar acyl migration, see: Kardos-Balogh, Z.; Soti, F.;
Incze, M.; Kajtar-Peredy, M.; Radics, L.; Szantay, C. Heterocycles 1989,
28, 303−312.
(43) Possible benzoyl migration involving formation and decom-
position of a 1,3-benzodiazapine has not been ruled out. See:
Plieninger, H.; Nogradi, I. Chem. Ber 1955, 88, 1965−1967. Chen, F.
M. F.; Forrest, T. P. Can. J. Chem. 1973, 51, 881−884.
(44) It is possible that the corresponding benzoyl indole forms and
then undergoes hydrolysis under the reaction conditions. Unprotected
indole products were observed by Joule and co-workers during their
Fischer indole studies with benzoyl phenylhydrazine (see ref 39).
(45) Perni, R. B.; Gribble, G. W. Org. Prep. Proced. Int. 1982, 14,
343−346.
(46) Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975−2977.
(47) Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Synthesis
1994, 639−666.
(48) For reports of similar oxidations, see: (a) Oikawa, Y.;
Yonemitsu, O. J. Org. Chem. 1977, 42, 1213−1216. (b) Pinchon, T.
M.; Nuzillard, J. M.; Richard, B.; Massiot, G.; Le Men-Olivier, L.;
Sevenet, T. Phytochemistry 1990, 29, 3341−3344. (c) Wang, T.; Xu,
Q.; Yu, P.; Liu, X.; Cook, J. M. Org. Lett. 2001, 3, 345−348. (d) Yu, J.;
Liao, X.; Cook, J. M. Org. Lett. 2002, 4, 4681−4684.
(49) Parikh, J. R.; Doering, W. E. J. Am. Chem. Soc. 1967, 89, 5505−
5507.
(50) Still, W. C. J. Am. Chem. Soc. 1978, 100, 1481−1487.
(51) N-Methylmorpholine N-oxide is known to oxidize activated
halides to the carbonyl oxidation state. See: Griffith, W. P.; Jolliffe, J.
M.; Ley, S. V.; Springhorn, K. F.; Tiffin, P. D. Synth. Commun. 1992,
22, 1967−1971.
(52) (a) Corey, E.; Palani, A. Tetrahedron Lett. 1995, 36, 7945−7948.
(b) Corey, E.; Palani, A. Tetrahedron Lett. 1995, 36, 3485−3488.
I
dx.doi.org/10.1021/ja3111626 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX