Inorganic Chemistry
Article
added to the reaction mixture to give a brown solution. The mixture
was stirred for 3 h at room temperature, and was washed with aqueous
saturated Na2S2O3. The organic layer was dried over MgSO4, and was
evaporated until dryness. The product was isolated as colorless crystals
Ministry of Education, Culture, Sports, Science, and Technol-
ogy, Japan. We thank Roger E. Cramer for his help in X-ray
crystallographic analysis and for careful reading of the
manuscript.
1
(0.56 g, 63%) from a mixture of CH2Cl2 and EtOH at −40 °C. H
NMR (600 MHz, CDCl3): δ 7.33 (t, JH−H = 7.6 Hz, 2H, p-CH of
Dpp), 7.27 (m, 4H, p-CH of Ph), 7.20 (m, 8H, o- or m-CH of Ph),
7.09 (d, JH−H = 7.6 Hz, 4H, m-CH of Dpp), 6.74 (m, 8H, o- or m-CH
of Ph). 13C{1H} NMR (151 MHz, CDCl3): δ 148.1, 141.7, 133.1,
130.1, 130.0, 128.4, 127.5, 126.7. UV−vis (hexane): λmax = 298 nm (ε
= 4500 M−1 cm−1), 337 nm (ε = 2100 M−1 cm−1). Anal. Calcd for
C36H26S2: C, 82.72; H, 5.01; S, 12.27. Found: C, 82.20; H, 5.41; S,
12.41. CV (4 mM in THF): Epc = −2.23 V (irreversible). Melting
point = 206−209 °C.
Synthesis of [{(Me3Si)2N}(TipS)(THF)Fe]2(μ-O) (5). A THF (15
mL) solution of HSTip (3.21 g, 13.6 mmol) was added dropwise to a
THF (15 mL) solution of 1 (5.11 g, 13.6 mmol) at room temperature.
After stirring for 1 h, O2 (100 mL, 4.08 mmol) was bubbled into the
solution using a gas-tight syringe at −40 °C. The reaction mixture
became a dark red solution immediately. The mixture was allowed to
warm to room temperature and was stirred for 6 h at room
temperature. The solvent was removed under reduced pressure to give
a dark red solid. The dark red residue was extracted with a mixture of
HMDSO (38 mL) and THF (15 mL), and the extract was centrifuged
to remove a small amount of insoluble material. Upon standing at −30
°C, red needles of 5 (0.80 g, 11%) were formed. 1H NMR (600 MHz,
C6D6): major signals appeared at δ 35.4, 29.2, 21.2, 14.3, 5.3, 2.6
(SiMe3), −3.8. UV−vis (hexane): λmax = 280 nm (ε = 9200 M−1
cm−1), 330 nm (ε = 6300 M−1 cm−1), 429 nm (ε = 6100 M−1 cm−1).
Anal. Calcd for C50H98Fe2N2O3S2Si4: C, 56.47; H, 9.29; N, 2.63; S,
6.03. Found: C, 56.84; H, 9.53; N, 2.23; S, 6.53. CV (2 mM in THF):
Epc = −1.65 V (irreversible).
X-ray Crystal Structure Determination. Crystallographic data
and refinement parameters for 2−5 and DppS−SDpp are summarized
in Table 1. Single crystals were coated with oil (immersion Oil, type B:
Code 1248, Cargille laboratories, Inc.) and mounted on loops.
Diffraction data were collected at −100 °C under a cold nitrogen
stream on a Rigaku AFC8 equipped with a Rigaku Saturn 70 CCD/
Micromax using graphite-monochromatized Mo Kα radiation (λ =
0.710690 Å). Six preliminary data frames were measured at 0.5°
increments of ω, to assess crystal quality and preliminary unit cell
parameters. The intensity images were also measured at 0.5° intervals
of ω. The frame data were integrated using the CrystalClear program
package, and the data sets were corrected for absorption using a
REQAB program. The calculations were performed with the
CrystalStructure program package. All structures were solved by
direct methods and refined by full-matrix least-squares. Anisotropic
refinement was applied to all non-hydrogen atoms except for
disordered atoms (refined isotropically), and all hydrogen atoms
were put at calculated positions. Four tBu groups in 3b are disordered
over two positions in 1:1, 1:1, 2:3, or 1:1 ratios. Six Me3Si groups in 3b
are disordered over two positions in 1:1, 7:3, 1:1, 1:1, 3:2, or 7:3 ratios.
A SIMU restraint was applied to the C71−C76 atoms in 3b.
REFERENCES
■
(1) Reviews: (a) Rao, P. V.; Holm, R. H. Chem. Rev. 2004, 104,
527−559. (b) Holm, R. H. Comprehensive Coordination Chemistry II;
McCleverty, J. A., Meyer, T. L., Eds.; Elsevier Pergamon: Amsterdam,
The Netherlands, 2004; Vol. 8, Chapter 8.3.
(2) For example: (a) Han, S.; Czernuszewicz, R. S.; Spiro, T. G.
Inorg. Chem. 1986, 25, 2276−2277. (b) Kanatzidis, M. G.; Hagen, W.
R.; Dunham, W. R.; Lester, R. K.; Coucouvanis, D. J. Am. Chem. Soc.
1985, 107, 953−961. (c) Kanatzidis, M. G.; Dunham, W. R.; Hagen,
W. R.; Coucouvanis, D. J. Chem. Soc., Chem. Commun. 1984, 356−358.
(d) Hagen, K. S.; Watson, A. D.; Holm, R. H. J. Am. Chem. Soc. 1983,
105, 3905−3913. (e) Hagen, K. S.; Holm, R. H. J. Am. Chem. Soc.
1982, 104, 5496−5497. (f) Hagen, K. S.; Reynolds, J. G.; Holm, R. H.
J. Am. Chem. Soc. 1981, 103, 4054−4063. (g) Reynolds, J. G.; Holm, R.
H. Inorg. Chem. 1980, 19, 3257−3260.
(3) (a) MacDonnell, F. M.; Ruhlandt-Senge, K.; Ellison, J. J.; Holm,
R. H.; Power, P. P. Inorg. Chem. 1995, 34, 1815−1822. (b) Ellison, J.
J.; Ruhlandt-Senge, K.; Power, P. P. Angew. Chem., Int. Ed. Engl. 1994,
33, 1178−1180. (c) Ruhlandt-Senge, K.; Power, P. P. Bull. Soc. Chim.
Fr. 1992, 129, 594−598. (d) Power, P. P.; Shoner, S. C. Angew. Chem.,
Int. Ed. Engl. 1991, 30, 330−332.
(4) (a) Ohki, Y.; Imada, M.; Murata, A.; Sunada, Y.; Ohta, S.; Honda,
M.; Sasamori, T.; Tokitoh, N.; Katada, M.; Tatsumi, K. J. Am. Chem.
Soc. 2009, 131, 13168−13178. (b) Ohta, S.; Ohki, Y.; Ikagawa, Y.;
Suizu, R.; Tatsumi, K. J. Organomet. Chem. 2007, 692, 4792−4799.
(c) Ohki, Y.; Ikagawa, Y.; Tatsumi, K. J. Am. Chem. Soc. 2007, 129,
10457−10465. (d) Ohki, Y.; Sunada, Y.; Honda, M.; Katada, M.;
Tatsumi, K. J. Am. Chem. Soc. 2003, 125, 4052−4053. (e) Komuro, T.;
Kawaguchi, H.; Tatsumi, K. Inorg. Chem. 2002, 41, 5083−5090.
(5) Hauptmann, R.; Kliß, R.; Schneider, J.; Henkel, G. Z. Anorg. Allg.
Chem. 1998, 624, 1927−1936.
(6) (a) Sydora, O. L.; Henry, T. P.; Wolczanski, P. T.; Lobkovsky, E.
B.; Rumberger, E.; Hendrickson, D. N. Inorg. Chem. 2006, 45, 609−
626. (b) Sydora, O. L.; Wolczanski, P. T.; Lobkovsky, E. B. Angew.
Chem., Int. Ed. 2003, 42, 2685−2687.
(7) Pryadun, R.; Holm, R. H. Inorg. Chem. 2008, 47, 3366−3370.
(8) (a) Zdilla, M. J.; Verma, A. K.; Lee, S. C. Inorg. Chem. 2011, 50,
1551−1562. (b) Verma, A. K.; Lee, S. C. J. Am. Chem. Soc. 1999, 121,
10838−10839.
(9) (a) Cooper, S. J.; Garner, C. D.; Hagen, W. R.; Lindley, P. F.;
Bailey, S. Biochemistry 2000, 39, 15044−15054. (b) Arendsen, A. F.;
Hadden, J.; Card, G.; McAlpine, A. S.; Bailey, S.; Zaitsev, V.; Duke, E.
H. M.; Lindley, P. F.; Krockel, M.; Trautwein, A. X.; Feiters, M. C.;
̈
Charnock, J. M.; Garner, C. D.; Marritt, S. J.; Thomson, A. J.; Kooter,
I. M.; Johnson, M. K.; Van Den Berg, W. A. M.; Van Dongen, W. M.
A. M.; Hagen, W. R. J. Biol. Inorg. Chem. 1998, 3, 81−95.
(10) Hagen, W. R.; Pierik, A. J.; Veeger, C. J. Chem. Soc., Faraday
Trans. 1 1989, 85, 4083−4090.
(11) Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida,
M.; Howard, J. B.; Rees, D. C. Science 2002, 297, 1696−1700.
(12) Review: Cannon, R. D.; White, R. P. Prog. Inorg. Chem. 1988,
36, 195−297.
ASSOCIATED CONTENT
* Supporting Information
Crystallographic data in CIF format. This material is available
■
S
(13) For recent references, see: (a) Novitchi, G.; Riblet, F.;
Scopelliti, R.; Helm, L.; Gulea, A.; Merbach, A. E. Inorg. Chem. 2008,
47, 10587−10599. (b) Marchetti, F.; Marchetti, F.; Melai, B.;
Pampaloni, G.; Zacchini, S. Inorg. Chem. 2007, 46, 3378−3384.
(c) Dai, J.-X.; Wu, F.-H.; Rothenberger, A.; Zhang, Q.-F. Z.
Naturforsch., B: Chem. Sci. 2007, 62, 1117−1122. (d) Saalfrank, R.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
W.; Scheurer, A.; Reimann, U.; Hampel, F.; Trieflinger, C.; Buschel,
̈
M.; Daub, J.; Trautwein, A. X.; Schunemann, V.; Coropceanu, V.
̈
ACKNOWLEDGMENTS
This research was financially supported by the Grant-in-Aid for
Specially Promoted Research (No. 23000007) from the
■
Chem.Eur. J. 2005, 11, 5843−5848. (e) Burkill, H. A.; Robertson,
N.; Vilar, R.; White, A. J. P.; Williams, D. J. Inorg. Chem. 2005, 44,
3337−3346.
2650
dx.doi.org/10.1021/ic2025928 | Inorg. Chem. 2012, 51, 2645−2651