ORGANIC
LETTERS
2012
Vol. 14, No. 5
1342–1345
Stereoselective, Electrophilic
r-C-Sialidation
Amandine Noel,† Bernard Delpech,† and David Crich*,†,‡
Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, CNRS, 1
Avenue de la Terrasse, 91190 Gif-sur-Yvette, France, and Department of Chemistry,
Wayne State University, Detroit, Michigan 48202, United States
Received January 31, 2012
ABSTRACT
5-N-Acetyl-5-N,4-O-oxazolidinone protected R- and β-sialyl phosphates react with allyltributylstannane and a variety of trimethylsilyl enol ethers to give
R-sialyl C-glycosides in high yield and excellent selectivity. Elimination to give the 2,3-glycal is minimized by the presence of the oxazolidinone ring. The
oxazolidinone ring can be subsequently cleaved under mild conditions at room temperature leaving in place the native acetamide group.
Because of resistance to hydrolytic enzymes and their
ability to mimic native O-glycosides, the C-glycosides have
enjoyed considerable attention from synthetic and medic-
inal chemists.1 One of the earliest,2 most reliable, and
widely applied approaches to C-glycosides has been the
reaction of electrophilic glycosyl donors, typically under
Lewis acid catalysis with C-nucleophiles such as alkenes,
silyl enol ethers, and allylsilanes. Interestingly, however,
following Paulsen’s report that treatment of chloride 1
with allyltrimethylsilane in the presence of trimethylsilyl
trifluoromethanesulfonate (TMSOTf) leads exclusively to
the elimination product 3 (Scheme 1),3 this method has not
been applied in the sialic and ulosonic acid series with the
exception of the low yield formation of a C-aryl glycoside 4
from the anomeric acetate 2 (Scheme 1).4
The formation of C-sialosides by the trapping of anome-
ric radicals generated from 1 and related radical precursors
avoids the problem of elimination but is typically un-
selective.3,5 This being the case, sialic and ulosonic acid
C-glycosides are typically generated by alkylation of en-
olate anions or their equivalents, most commonly gener-
ated reductively from thioglycosides or the corresponding
sulfones, when excellent R-selectivity is observed.1c,e,g,6
† CNRS.
‡ Wayne State University.
(1) (a) Levy, D. E.; Tang, C. The Chemistry of C-Glycosides;
Pergamon: Oxford, 1995. (b) C-Glycoside Synthesis; Postema, M. H. D., Ed.;
CRC: Boca Raton, FL, 1995. (c) Yuan, X. J.; Linhardt, R. J. Curr. Top. Med.
Chem. 2005, 5, 1393–1430. (d) Du, Y.; Linhardt, R. J. Tetrahedron 1998,
54, 9913–9959. (e) Beau, J.-M.; Gallagher, T. Top. Curr. Chem. 1997,
187, 1–54. (f) Nicotra, F. Top. Curr. Chem. 1997, 187, 55–83. (g) Somsak,
L. Chem. Rev. 2001, 101, 81–135. (h) Skrydstrup, T.; Vauzeilles, B.;
Beau, J.-M. In Carbohydrates in Chemistry and Biology; Ernst, B., Hart,
G. W., Sinay, P., Eds.; Wiley-VCH: Weinheim, 2000; Vol. 1, pp 495À
530. (i) Beau, J.-M.; Vauzeilles, B.; Skrydstrup, T. In Glycoscience;
Fraser-Reid, B., Tatsuta, K., Thiem, J., Eds.; Springer: Berlin, 2001; Vol. 3,
pp 2679À2724. (j) Gyorgydeak, Z.; Pelyvas, I. F. In Glycoscience; Fraser-
Reid, B., Tatsuta, K., Thiem, J., Eds.; Springer: Berlin, 2001; Vol. 1,
pp 691À747. (k) Postema, M. H. D.; Piper, J. L.; Betts, R. L. Synlett
2005, 1345–1358. (l) Postema, M. H. D.; Calimente, D. In Glycochemistry:
Principles, Synthesis, and Applications; Wang, P. G., Bertozzi, C. R., Eds.;
Dekker: New York, 2001; pp 77À131. (m) Boons, G.-J.; Demchenko, A. V.
In Carbohydrate-Based Drug Discovery; Wong, C.-H., Ed.; Wiley-VCH:
Weinheim, 2003; Vol. 1, pp 55À102. (n) Bertozzi, C. R.; Bednarski, M. D.
In Modern Methods in Carbohydrate Synthesis; Khan, S. H., O'Neill, R. A.,
Eds.; Harwood: Amsterdam, 1996; pp 316À351.
(3) Paulsen, H.; Matschulat, P. Liebigs Ann. 1991, 487–495.
(4) (a) Kuribayashi, T.; Ohkawa, N.; Satoh, S. Tetrahedron Lett.
1998, 39, 4537–4540. (b) Kuribayashi, T.; Mizuno, Y.; Gohya, S.; Satoh,
S. J. Carbohydr. Chem 1999, 18, 371–382.
(5) (a) Nagy, J. O.; Bednarski, M. D. Tetrahedron Lett. 1991, 32,
3953–3956. (b) Waglund, T.; Claesson, A. Acta Chem. Scand. 1991, 46,
73–76.
(6) (a) Luthman, K.; Orbe, M.; Waglund, T.; Claesson, A. J. Org.
Chem. 1987, 52, 3777–3784. (b) Crich, D.; Ritchie, T. J. J. Chem. Soc.,
Chem. Commun. 1988, 985–986. (c) Wallimann, K.; Vasella, A. Helv.
Chim. Acta 1991, 74, 1520–1532. (d) Vlahov, I. R.; Vlahova, P. I.;
Linhardt, R. J. J. Am. Chem. Soc. 1997, 119, 1480–1481. (e) Abdallah,
Z.; Doisneau, G.; Beau, J.-M. Angew. Chem., Int. Ed. 2003, 42, 5209–
5212. (f) Watanabe, T.; Hirai, G.; Kato, M.; Hashizume, D.; Miyagi, T.;
Sodeoka, M. Org. Lett. 2008, 10, 4167–4170.
(2) (a) Ogawa, T.; Pernet, A. G.; Hanessian, S. Tetrahedron Lett. 1973,14,
3543–3546. (b) Giannis, A.; Sandhoff, K. Tetrahedron Lett. 1985, 26, 1479–
1482. (c) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104,
4976–4978.
r
10.1021/ol300255q
Published on Web 02/15/2012
2012 American Chemical Society