and traps a nitrilium ion to form an acyloxylated inter-
mediate. Subsequent acyl transfer leads to the correspond-
ing R-acyloxy amides or R-amino amides. In our previous
studies, silanol or borinic acid acted as a carboxylic acid in
the Passerini-type reaction (eq 1).12
Table 1. Reaction Conditions for [5 þ 1] Cycloaddition Reac-
tion
entry
solvent
time/m
yield / %
1
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CHCl3
AcOEt
THF
10
10
30
180
15
30
30
30
30
40
10
30
95
85
62
83
80
82
82
83
85
75
96
70
In these reactions, a nitrilium intermediate formed from
the aldehyde and isocyanide was intermolecularly trapped
by the hydroxyl group on the silicon or boron atom to
afford the corresponding products. We sought to expand
this concept to the intramolecular trapping of the nitrilium
intermediate in the Ugi-type reaction. Thus, if a molecule
contains both an electrophile (CdN) and a potential
nucleophilic group (Nuꢀ), intramolecular trapping of the
nitrilium intermediate could be readily realized relative to
the intermolecular version (eq 2).13 Based on this hypothesis,
we chose N0-acyl azomethine imine as an “isocyanophile”,14
whichisanextendedconjugated1,3-dipole and could function
as a “1,5-dipole”15 to afford the corresponding heterocycles
(eq 3).
2a
3b
4c
5
6
7
8
MeCN
MeOH
toluene
CH2Cl2
CH2Cl2
9
10
11d
12e
a 30 mol % of Mg(OTf)2 was used. b 30 mol % of Zn(OTf)2 was used.
c Reaction was conducted at ꢀ20 °C. d Isocyanide 2a (1.2 equiv) was
used. e Isocyanide 2a (1.0 equiv) was used.
an isocyanide as a C1 source to afford the corresponding
imin-1,3,4-oxadiazin-6-one derivatives (Table 1).
Our initial study began using the well-known C,N-cyclic
N0-acyl azomethine imine 1a16,17 as a 1,5-dipolar com-
pound as shown in Table 1. To our delight, 2.0 equiv of
tert-butyl isocyanide (2a) cleanly reacted with the N0-acyl
azomethine imine 1a in dichloromethane at room tem-
perature to afford the corresponding iminoxadiazinone
derivative 3aa in 95% yield (entry 1). Surprisingly, we
found that the reaction proceeded very quickly, and 1a was
consumed within 10 min at room temperature. In this
reaction, activation by some Lewis acids did not appear to
be significant, i.e., the reaction of the azomethine imine 1a
and the isocyanide 2a in the presence of Mg(OTf)2 or
Zn(OTf)2 gave the product in 85% or 62% yield, respec-
tively (entries 2 and 3). When the reaction was conducted
at ꢀ20 °C, it was complete within 180 min to afford 3aa in
83% yield (entry 4). This reaction proceeded smoothly in
At first, we examined whether the N0-acyl azomethine
imine could act as a 1,5-dipolar equivalent, which can trap
(10) (a) Yue, T.; Wang, M.-X.; Wang, D.-X.; Masson, G.; Zhu, J. J.
Org. Chem. 2009, 74, 8396–8399. (b) Mihara, H.; Xu, Y.; Shepherd,
N. E.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 8384–
8385. (c) Scheffelaar, R.; Paravidino, M.; Muilwijk, D.; Lutz, M.; Spek,
A. L.; de Kanter, F. J. J.; Orru, R. V. A.; Ruijter, E. Org. Lett. 2009, 11,
125–128. (d) Elders, N.; Ruijter, E.; de Kanter, F. J. J.; Groen, M. B.;
Orru, R. V. A. Chem.;Eur. J. 2008, 14, 4961–4973. (e) Pirali, T.; Tron,
G. C.; Masson, G.; Zhu, J. Org. Lett. 2007, 9, 5275–5278. (f) Wang,
S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Org. Lett. 2007, 9, 3615–3618.
(g) Wang, S.-X.; Wang, M.-X.; Wang, D.-X.; Zhu, J. Eur. J. Org. Chem.
2007, 4076–4080. (h) Pirali, T.; Tron, G. C.; Zhu, J. Org. Lett. 2006, 8,
(12) (a) Soeta, T.; Kojima, Y.; Ukaji, Y.; Inomata, K. Tetrahedron
Lett. 2011, 52, 2557–2559. (b) Soeta, T.; Kojima, Y.; Ukaji, Y.; Inomata,
K. Org. Lett. 2010, 12, 4341–4343.
(13) (a) Rahmati, A.; Kouzehrash, M. A. Synthesis 2011, 2913–2920.
(b) Zhang, J.; Coqueron, P.-Y.; Vors, J.-P.; Ciufolini, M. A. Org. Lett.
2010, 12, 3942–3945. (c) Deyrup, J. A.; Killion, K. K. J. Heterocycl.
Chem. 1972, 9, 1045–1048.
ꢀ
~
4145–4148. (i) Cuny, G.; Gamez-Montano, R.; Zhu, J. Tetrahedron
ꢀ
2004, 60, 4879–4885. (j) Janvier, P.; Bois-Choussy, M.; Bienayme, H.;
Zhu, J. Angew. Chem., Int. Ed. 2003, 42, 811–814. (k) Janvier, P.; Sun, X.;
(14) “Isocyanophile” is herein defined as a substrate which is subject
to nucleophilic attack of an isocyanide.
ꢀ
Bienayme, H.; Zhu, J. J. Am. Chem. Soc. 2002, 124, 2560–2567. (l)
ꢀ
~
Gamez-Montano, R.; Zhu, J. Chem. Commun. 2002, 2448–2449. (m)
(15) Taykor, E. C.; Turchi, I. J. Chem. Rev. 1979, 79, 181–231.
(16) (a) Hashimoto, T.; Omote, M.; Maruoka, K. Angew. Chem., Int.
Ed. 2011, 50, 8952–8955. (b) Hashimoto, T.; Omote, M.; Maruoka, K.
Angew. Chem., Int. Ed. 2011, 50, 3489–3492. (c) Hashimoto, T.; Maeda,
Y.; Omote, M.; Nakatsu, H.; Maruoka, K. J. Am. Chem. Soc. 2010, 132,
4076–4077.
(17) We have already revealed that 1a functions as an electrophile
toward cyanide ion in the Strecker-type reaction. Sakai, T.; Soeta, T.;
Inomata, K.; Ukaji, Y. Bull. Chem. Soc. Jpn. 2012, 85, 231–235.
ꢀ
Sun, X.; Janvier, P.; Zhao, G.; Bienayme, H.; Zhu, J. Org. Lett. 2001, 3,
877–880.
(11) (a) Tobisu, M; Chatani, N. Chem. Lett. 2011, 40, 330–340. (b)
Oshita, M.; Yamashita, K.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc.
2005, 127, 761–766. (c) Chatani, N.; Oshita, M.; Tobisu, M.; Ishii, Y.;
Murai, S. J. Am. Chem. Soc. 2003, 125, 7812–7813. They also reported
the GaCl3-catalyzed insertion of isocyanides into the CꢀO bond of
acetals to form the iminoether derivatives; see: (d) Yoshioka, S.; Oshita,
M.; Tobisu, M.; Chatani, N. Org. Lett. 2005, 7, 3697–3699.
Org. Lett., Vol. 14, No. 5, 2012
1227