A Tandem “On-Palladium” Heck–Jeffery Amination
[2]
(br. s, 1 H), 7.54 (d, J = 8.6 Hz, 1 H), 7.16 (m, 1 H), 6.83 (s, 1 H),
6.82 (dd, J = 8.6, 2.2 Hz, 1 H), 4.39 (q, J = 7.18 Hz, 2 H), 3.86 (s,
3 H), 1.41 (t, J = 7.18 Hz, 3 H) ppm. 13C NMR (151 MHz, CDCl3):
δ = 162.16, 159.01, 138.06, 126.56, 123.51, 122.00, 112.41, 109.15,
93.86, 60.93, 55.62, 14.57 ppm.
For a selection of recent syntheses of functionalized indoles
see: a) S. G. Newman, M. Lautens, J. Am. Chem. Soc. 2010,
132, 11416–11417; b) S. Cacchi, G. Fabrizi, A. Goggiamani, A.
Perboni, A. Sferrazza, P. Stabile, Org. Lett. 2010, 12, 3279–
3281; c) Y. Ohta, H. Chiba, S. Oishi, N. Fujii, H. Ohno, J. Org.
Chem. 2009, 74, 7052–7058; d) L. Zhou, M. P. Doyle, J. Org.
Chem. 2009, 74, 9222–9224; e) X. Li, Y. Du, L. Liang, X. Li,
Y. Pan, K. Zhao, Org. Lett. 2009, 11, 2643–2646; f) G. A.
Kraus, H. Guo, Org. Lett. 2008, 10, 3061–3063; g) S. L. Cui, J.
Wang, Y. G. Wang, J. Am. Chem. Soc. 2008, 130, 13526–13527;
h) N. Sakai, K. Annaka, A. Fujita, A. Sato, T. Konakahara,
J. Org. Chem. 2008, 73, 4160–4165; i) B. J. Stokes, H. Dong,
B. E. Leslie, A. L. Pumphrey, T. G. Driver, J. Am. Chem. Soc.
2007, 129, 7500–7501; j) Y. Chen, X. Xie, D. Ma, J. Org. Chem.
2007, 72, 9329–9334; k) F. Liu, D. Ma, J. Org. Chem. 2007,
72, 4844–4850; l) V. Sridharan, S. Perumal, C. Avendaño, J. C.
Menéndez, Synlett 2006, 91–95; m) Y. Jia, J. Zhu, J. Org. Chem.
2006, 71, 7826–7834; n) A. Fayol, Y. Q. Fang, M. Lautens, Org.
Lett. 2006, 8, 4203–4206; o) D. Yue, T. Yao, R. C. Larock, J.
Org. Chem. 2006, 71, 62–69; p) M. C. Willis, G. N. Brace, I. P.
Holmes, Angew. Chem. 2005, 117, 407; Angew. Chem. Int. Ed.
2005, 44, 403–406; q) Y. Q. Fang, M. Lautens, Org. Lett. 2005,
7, 3549–3552.
For recent reviews on transition metal mediated approaches to
indole synthesis, see: a) S. Cacchi, G. Fabrizi, A. Goggiamani,
Org. Biomol. Chem. 2011, 9, 641–652; b) S. Cacchi, G. Fabrizi,
Chem. Rev. 2011, 111, PR215–PR283; c) G. Zeni, R. C. Larock,
Chem. Rev. 2006, 106, 4644–4680; d) S. Cacchi, G. Fabrizi,
Chem. Rev. 2005, 105, 2873–2920.
a) A. Nemes, Monoterpenoid Indole Alkaloids, CNS and Anti-
cancer Drugs, in: Analogue-Based Drug Discovery II, J. Fischer,
C. R. Ganellin (Eds.), John Wiley & Sons, 2010; b) M. Hesse,
in: Alkaloids, Nature’s Curse or Blessing?, Wiley-VCH,
Weinheim, Germany, 2002; c) M. Ishikura, K. Yamada, Nat.
Prod. Rep. 2009, 26, 803–852.
Ethyl 5-Fluoro-1H-indole-2-carboxylate (7d):[11] M.p. 147–149 °C
(ref.[11] m.p. 147–148 °C). 1H NMR (600 MHz, CDCl3): δ = 9.00
(br. s, 1 H), 7.36 (dd, J = 8.9, 4.3 Hz, 1 H), 7.32 (dd, J = 9.2,
2.4 Hz, 1 H), 7.18 (m, 1 H), 7.09 (td, J = 9.02, 2.48 Hz, 1 H), 4.42
(q, J = 7.10 Hz, 2 H), 1.42 (t, J = 7.10 Hz, 3 H) ppm. 13C NMR
(151 MHz, CDCl3): δ = 161.89, 158.31 (d, J = 237.59 Hz), 129.20,
127.82 (d, J = 10.4 Hz), 114.59 (d, J = 26.89 Hz), 112.91 (d, J =
9.59 Hz), 108.57 (d, J = 5.25 Hz), 106.92 (d, J = 23.26 Hz), 61.34,
14.53 ppm.
Ethyl 5-Chloro-1H-indole-2-carboxylate (7e):[12] M.p. 167 °C (ref.[12]
1
m.p. 167–169 °C). H NMR (600 MHz, CDCl3): δ = 9.12 (br. s, 1
H), 7.66 (d, J = 1.83 Hz, 1 H), 7.35 (d, J = 8.35 Hz, 1 H), 7.27 (dd,
J = 8.73, 1.92 Hz, 1 H), 7.15 (m, 1 H), 4.42 (q, J = 7.10 Hz, 2 H),
1.42 (t, J = 7.10 Hz, 3 H) ppm. 13C NMR (151 MHz, CDCl3): δ =
161.91, 135.22, 128.89, 128.55, 126.59, 125.97, 121.89, 113.12,
108.08, 61.42, 14.51 ppm.
[3]
Ethyl 5-Methyl-1H-indole-2-carboxylate (7f):[15] M.p. 161–162 °C
1
(ref.[16] m.p. 163 °C). H NMR (600 MHz, CDCl3): δ = 8.85 (br. s,
1 H), 7.46 (d, J = Hz 0.64 H, 1 H), 7.31 (d, J = 8.46 Hz, 1 H), 7.15
(m, 2 H), 4.41 (q, J = 7.10 Hz, 2 H), 2.44 (s, 3 H), 1.42 (t, J =
7.10 Hz, 3 H) ppm. 13C NMR (151 MHz, CDCl3): δ = 162.22, [4]
135.38, 130.23, 127.93, 127.65, 127.45, 121.98, 111.64, 108.27,
61.08, 21.55, 14.55 ppm.
Ethyl 5,6-Dimethyl-1H-indole-2-carboxylate (7g):[17] M.p. 162–
165 °C. 1H NMR (600 MHz, CDCl3): δ = 8.71 (br. s, 1 H), 7.43 (s,
1 H), 7.18 (s, 1 H), 7.12 (dd, J = 2.00, 0.84 Hz, 1 H), 4.39 (q, J =
7.18 Hz, 2 H), 2.37 (s, 3 H), 2.34 (s, 3 H), 1.41 (t, J = 7.18 Hz, 3
H) ppm. 13C NMR (151 MHz, CDCl3): δ = 162.27, 136.13, 135.32,
129.99, 126.85, 126.14, 122.30, 112.30, 112.00, 108.28, 60.96, 20.91
20.22, 14.57 ppm.
[5]
For biologically active indole-2-carboxylic acid derivatives, see:
a) B. A. Mayes, N. C. Chaudhuri, C. P. Hencken, F. Jeannot,
G. M. Latham, S. Mathieu, F. P. McGarry, A. J. Stewart, J.
Wang, A. Moussa, Org. Process Res. Dev. 2010, 14, 1248–1253;
b) M. Sechi, M. Derudas, R. Dallocchio, Dessı, A. A. Bacchi,
L. Sannia, F. Carta, M. Palomba, O. Ragab, C. Chan, R. Shoe-
maker, S. Sei, R. Dayam, N. Neamati, J. Med. Chem. 2004, 47,
5298–5310.
a) P. Das, J. McNulty, Eur. J. Org. Chem. 2010, 3587–3591; b)
J. McNulty, S. Cheekoori, T. P. Bender, J. A. Coggan, Eur. J.
Org. Chem. 2007, 1423–1428; c) J. McNulty, J. J. Nair, A. Cap-
retta, Tetrahedron Lett. 2009, 50, 4087–4091; d) J. McNulty,
J. J. Nair, M. Sliwinski, A. J. Robertson, Tetrahedron Lett.
2009, 50, 2342–2346; e) D. A. Gerritsma, A. Robertson, J.
McNulty, A. Capretta, Tetrahedron Lett. 2004, 45, 7629–7632.
Ethyl 5-Cyano-1H-indole-2-carboxylate (7h):[18] M.p. 179–180 °C,
1H NMR (600 MHz, CDCl3): δ = 9.20 (s, 1 H), 8.08 (s, 1 H), 7.54
(dd, J = 8.6, 1.3 Hz, 1 H), 7.50 (d, J = 8.6 Hz, 1 H), 7.28 (d, J =
1.2 Hz, 1 H), 4.44 (q, J = 7.1 Hz, 2 H), 1.43 (t, J = 7.1 Hz, 3 H)
ppm. 13C NMR (151 MHz, CDCl3): δ = 161.41, 138.08, 129.96,
128.68, 127.73, 127.32, 120.08, 113.07, 109.00, 104.55, 61.76, 14.49
ppm.
[6]
Supporting Information (see footnote on the first page of this arti-
cle): Additional experimental procedures, compound characteriza-
[7]
[8]
a) T. Jeffery, Tetrahedron 1996, 52, 10113–10130; b) B. Basu, S.
Das, P. Das, B. Mandal, D. Banerjee, F. Almqvist, Synthesis
2009, 1137–1146; c) E. M. Beccalli, E. Borsini, S. Brenna, S.
Galli, M. Rigamonti, G. Brogginni, Chem. Eur. J. 2010, 16,
1670–1678.
a) J. Quick, R. Jenkins, J. Org. Chem. 1978, 43, 2275–2277; b)
S. Cacchi, P. G. Ciattini, E. Morera, G. Ortar, Tetrahedron Lett.
1987, 28, 3039–3042; c) C. A. Merlic, M. F. Semmelhack, J.
Organomet. Chem. 1990, 391, C23–C27; d) T. Sakamoto, Y.
Kondo, H. Yamanaka, Heterocycles 1988, 27, 453–456.
1
tion data and copies of H and 13C spectra.
Acknowledgments
We thank Natural Sciences and Engineering Research Council of
Canada (NSERC), Cytec Canada Inc. and McMaster University
for the financial support of this work.
[9]
a) E. Tullberg, F. Schacher, D. Peters, T. Frejd, Synthesis 2006,
1183–1189; b) A. Minatti, K. Muniz, Chem. Soc. Rev. 2007,
36, 1142–1152.
[10]
[1] a) E. Fischer, F. Jourdan, Ber. Dtsch. Chem. Ges. 1883, 16,
2241–2245; b) R. B. Van Order, H. G. Lindwall, Chem. Rev.
1942, 30, 69–96; c) W. Madelung, Ber. Dtsch. Chem. Ges. 1912,
45, 1128–1134; d) A. Reissert, Ber. Dtsch. Chem. Ges. 1897, 30,
1030–1053; e) R. J. Sundberg, The Chemistry of Indoles, Aca-
demic Press, New York, 1970.
a) J. M. Racowski, A. R. Dick, M. S. Sanford, J. Am. Chem.
Soc. 2009, 131, 10974–10983; b) N. R. Deprez, M. S. Sanford,
J. Am. Chem. Soc. 2009, 131, 11234–11241; c) T.-S. Mei, X.
Wang, J.-Q. Yu, J. Am. Chem. Soc. 2009, 131, 10806–10807; d)
D. Kalyani, A. D. Satterfield, M. S. Sanford, J. Am. Chem. Soc.
2010, 132, 8419–8427; e) X. Lu, Top. Catal. 2005, 35, 73–86.
Eur. J. Org. Chem. 2011, 6902–6908
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
6907