Facile Preparation and Reactivity of Magnetic Nanoparticle-Supported Hypervalent Iodine Reagent
[3] For reviews on supported hypervalent iodine reagents,
Oxidation of Alcohols by MNP-PIDA
see: a) H. Togo, Eco Ind. 2002, 7, 5; b) H. Togo, K. Sa-
kuratani, Synlett 2002, 1966; c) H.-J. Frohn, M. E.
Hirschberg. A. Wenda, V. V. Bardin, J. Fluorine Chem.
2008, 129, 459; d) M. Uyanik, K. Ishihara, Chem.
Commun. 2009, 2086; e) M. S. Yusubov, V. V. Zhdan-
kin, Mendeleev Commun. 2010, 20, 185.
Reagent 3 (1 mmol) was added to a solution of alcohol
(1 mmol) and TEMPO (0.01 g, 0.05 mmol) in CH2Cl2
(10 mL). The resulting solution was stirred at room temper-
ature and monitored by gas or thin-layer chromatography.
After completion, 3 was collected at the side of the flask
using a small magnet, and the supernatant carefully deca-
nted. Particles were then washed and regenerated by treat-
ment with peracetic acid. The organics were concentrated
under vacuum to yield the corresponding carbonyl com-
pound.
[4] a) H. Togo, G. Nogami, M. Yokoyama, Synlett 1998,
534; b) S. Ficht, M. Mulbaier, A. Giannis, Tetrahedron
2001, 57, 4863; c) A. Kirschning, M. Jesberger, H. Mon-
enschein, Tetrahedron Lett. 1999, 40, 8999; d) M.-N.
Roy, J.-C. Poupon, A. B. Charette, J. Org. Chem. 2009,
74, 8510.
[5] C. Rocaboy, J. A. Gladysz, Chem. Eur. J. 2003, 9, 88.
[6] a) W. X. Qian, E. L. Jin, W. L. Bao, Y. M. Zhang,
Angew. Chem. 2005, 117, 974; Angew. Chem. Int. Ed.
2005, 44, 952; b) S. T. Handy, M. Okello, J. Org. Chem.
2005, 70, 2874.
[7] a) H. Tohma, A. Maruyama, A. Maeda, T. Maegawa, T.
Dohi, M. Shiro, T. Morita, Y. Kita, Angew. Chem. 2004,
116, 3679; Angew. Chem. Int. Ed. 2004, 43, 3595; b) T.
Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H.
Tohma, M. Shiro, Y. Kita, Chem. Commun. 2005, 2205;
c) A. Moroda, H. Togo, Tetrahedron 2006, 62, 12408;
d) M. S. Yusubov, L. A. Drygunova, V. V. Zhdankin,
Synthesis 2004, 2289.
Oxidation of Alcohols by SiO2-PIDA
Reagent 5 (1 mmol) was added to a solution of alcohol
(1 mmol) and TEMPO (0.01 g, 0.05 mmol) in CH2Cl2
(10 mL). The resulting solution was stirred at room temper-
ature and monitored by gas or thin-layer chromatography.
After completion, 5 was collected by filtration for reuse.
The filtrate was evaporated to give the corresponding car-
bonyl compound.
Acknowledgements
[8] For reviews on MNP, see: a) A. H. Lu, E. L. Salabas, F.
Schꢅth, Angew. Chem. 2007, 119, 1242; Angew. Chem.
Int. Ed. 2007, 46, 1222; b) S. Laurent, D. Forge, M.
Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller,
Chem. Rev. 2008, 108, 2064; c) A. H. Latham, M. E.
Williams, Acc. Chem. Res. 2008, 41, 411; d) S. Shylesh,
V. Schꢅnemann, W. R. Thiel, Angew. Chem. 2010, 122,
3504; Angew. Chem. Int. Ed. 2010, 49, 3428; e) A.
Schatz, O. Reiser, W. J. Stark, Chem. Eur. J. 2010, 16,
8950; f) F. Liu, S. Laurent, H. Fattahi, L. V. Elst, R. N.
Muller, Nanomedicine (Lond) 2011, 6, 519; g) V. Pol-
shettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.-
M. Basset, Chem. Rev. 2011, 111, 3036.
[9] a) T. Zeng, W.-W. Chen, C. M. Cirtiu, A. Moores, G.
Song, C.-J. Li, Green Chem. 2010, 12, 570; b) M. M.
Mojtahedi, M. S. Abaee, T. Alishiri, Tetrahedron Lett.
2009, 50, 2322; c) F. Shi, M. K. Tse, M.-M. Pohl, A.
Brꢅckner, S. Zhang, M. Beller, Angew. Chem. 2007,
119, 9022; Angew. Chem. Int. Ed. 2007, 46, 8866.
[10] For examples, see: a) A.-H. Lu, W. Schmidt, N. Ma-
toussevitch, H. BÅnnemann, B. Spliethoff, B. Tesche, E.
Bill, W. Kiefer, F. SchSth, Angew. Chem. 2004, 116,
4403; Angew. Chem. Int. Ed. 2004, 43, 4303;
b) H. M. R. Gardimalla, D. Mandal, P. D. Stevens, M.
Yen, Y. Gao, Chem. Commun. 2005, 4432; c) A. Hu,
G. T. Yee, W. Lin, J. Am. Chem. Soc. 2005, 127, 12486;
d) P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen,
Y. Gao, Org. Lett. 2005, 7, 2085; e) Y. Zheng, P. D. Ste-
vens, Y. Gao, J. Org. Chem. 2006, 71, 537; f) D. Lee, J.
Lee, H. Lee, S. Jin, T. Hyeon, B. M. Kim, Adv. Synth.
Catal. 2006, 348, 41; g) R. Abu-Reziq, H. Alper, D.
Wang, M. L. Post, J. Am. Chem. Soc. 2006, 128, 5279;
h) N. T. S. Phan, C. S. Gill, J. V. Nguyen, Z. J. Zhang,
C. W. Jones, Angew. Chem. 2006, 118, 2267; Angew.
Chem. Int. Ed. 2006, 45, 2209; i) N. T. S. Phan, C. W.
Jones, J. Mol. Catal. A: Chem. 2006, 253, 123; j) G.
We are grateful for the financial support from Nanjing Uni-
versity of Science and Technology, and Project supported by
the Research and Innovation Plan for Graduate Students of
Jiangsu Higher Education Institutions (No. CX2211 0266).
References
[1] For books and selected reviews on hypervalent iodine
chemistry, see: a) A. Varvoglis, Hypervalent Iodine in
Organic Synthesis, Academic Press, London, 1997; b) T.
Wirth, Topics in Current Chemistry: Hypervalent Iodine
Chemistry-Modern Developments in Organic Synthesis,
Springer, Berlin, 2003; c) G. F. Koser, Adv. Heterocycl.
Chem. 2004, 86, 225; d) H. Tohma, Y. Kita, Adv. Synth.
Catal. 2004, 346, 111; e) T. Wirth, Angew. Chem. 2005,
117, 3722; Angew. Chem. Int. Ed. 2005, 44, 3656;
f) R. M. Moriarty, J. Org. Chem. 2005, 70, 2893; g) V. V.
Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299;
h) V. V. Zhdankin, ARKIVOC 2009, i, 1; i) V. Satam,
A. Harad, R. Rajule, H. Pati, Tetrahedron 2010, 66,
7659; j) A. Duschek, S. F. Kirsch, Angew. Chem. 2011,
123, 1562; Angew. Chem. Int. Ed. 2011, 50, 1524; k) J. P.
Brand, D. F. Gonzꢄlez, S. Nicolai, J. Waser, Chem.
Commun. 2011, 47, 102; l) V. V. Zhdankin, J. Org.
Chem. 2011, 76, 1185.
[2] For reviews on catalytic use of hypervalent iodne re-
agents, see: a) R. D. Richardson, T. Wirth, Angew.
Chem. 2006, 118, 4510; Angew. Chem. Int. Ed. 2006, 45,
4402; b) M. Ochiai, Chem. Rec. 2007, 7, 12; c) M.
Ochiai, K. Miyamoto, Eur. J. Org. Chem. 2008, 4229;
d) M. Uyanik, M. Akakura, K. Ishihara, J. Am. Chem.
Soc. 2009, 131, 251; e) T. Dohi, Y. Kita, Chem.
Commun. 2009, 2073; f) M. Ngatimin, D. W. Lupton,
Aust. J. Chem. 2010, 63, 653.
Adv. Synth. Catal. 2012, 354, 313 – 320
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
319