Journal of the American Chemical Society
Article
The reaction mixture was stirred for 12 h at this temperature. Then, all
volatiles were removed under vacuum. The residue was washed with n-
hexane (50 mL) to afford a red colored solid. The crude compound
was again dissolved in a minimum amount of toluene and filtered
through the pad of Celite in a medium porosity frit. The filtrate was
stored 3 days at room temperature to give a red crystalline compound
suitable for single crystal analysis (yield 654 mg, 82%). Elemental
analysis (%) calcd for C47H51Cl4N3Ge2 (953.08): C, 59.23; H, 6.24; N,
4.41. Found: C, 59.76; H, 6.34; N, 4.89. 1H NMR (500 MHz, THF-d8,
TMS, 25 °C): δ 8.99 (t, 1H, Py−Hp), 8.88 (d, 2H, Py−Hm), 7.15 (m,
6H, Ar−H), 2.83 (sept, 4H, CH(CH3)2), 2.64 (s, 3H, NC−CH3),
2.22 (s, 3H, NC−CH3), 1.15 (m, 24H, CH(CH3)2) ppm. 13C NMR
(500 MHz, THF-d8, TMS, 25 °C): δ 150.14 (NC), 139.25 (Py−
Co), 138.21 (Ar−Cip), 137.23 (Ar−Co), 134.55 (Ar−Cp), 127.02 (Py−
Cp), 124.57 (Py−Cm), 123.30 (Ar−Cm), 29.12 (NC−CH3), 28.16
(NC−CH3′), 25.29 (CH(CH3)2), 24.31(CH′(CH3)2), 19.35
(CHCH3), 18.65 (CHCH3′) ppm. EI-MS: m/z (%) 590 (100)
[(LB)GeCl]+, 178 (100) [GeCl3]+.
ACKNOWLEDGMENTS
■
H.W.R. thanks the Deutsche Forschungsgemeinschaft for support
(DFG RO 224/55-3). D.S. is grateful for funding from the DFG
Priority Programme 1178, the DNRF funded Center for Materials
Crystallography (CMC) for support, and the Land Niedersachsen
for providing a fellowship in the Catalysis for Sustainable
Synthesis (CaSuS) Ph.D. program. J.-P.D. thanks NSERC of
Canada for a Postgraduate Scholarship. A.L. thanks the Deutsche
Forschungsgemeinschaft for an Emmy Noether Fellowship. This
paper is dedicated to Professor R. Adams on the occasion of his
65th birthday.
REFERENCES
■
(1) (a) Marygaryan, A. M. Photodetectors and Fiber Optics; Academic
Press: San Diego, CA, 2001; pp 369−458. (b) Shemkunas, M. P.;
Petuskey, W. T.; Chizmeshya, A. V. G.; Leinenweber, K.; Wolf, G. H.
J. Mater. Res. 2004, 19, 1392−1399. (c) Power, P. P. Organometallics
2007, 26, 4362−4372. (d) Power, P. P. Appl. Organometal. Chem.
2005, 19, 488−493. (e) Spike, G. H.; Power, P. P. Chem. Commun.
2007, 85−87. (f) Richards, A. F.; Brynda, M.; Olmstead, M. M.;
Power, P. P. Organometallics 2004, 23, 2841−2844. (g) Richards, A. F.;
Hope, H.; Power, P. P. Angew. Chem., Int. Ed. 2003, 42, 4071−4074.
(h) Dias, H. V. R.; Wang, Z.; Jin, W. Coord. Chem. Rev. 1998, 176, 67−
86. (i) Braunschweig, H.; Hitchcock, P. B.; Lappert, M. F.; Pierssens,
L. J.-M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1156−1158. (j) Saur, I.;
Garcia Alonso, S.; Barrau, J. Appl. Organometal. Chem. 2005, 19, 414−
428. (k) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Chem. Rev. 2009, 109,
3479−3511.
Synthesis of [(LB)SnCl]+[SnCl3]− (2). Compound 2 was syn-
thesized by a similar procedure as compound 1 using SnCl2 (394 mg,
2.07 mmol) instead of GeCl2·dioxane. A saturated toluene solution of
compound 2 gives yellow colored crystals suitable for structural
analysis (yield 759 mg, 85%). Elemental analysis (%) calcd for
C47H51Cl4N3Sn2 (1045.22): C, 54.01; H, 5.69; N, 4.02. Found: C,
54.56; H, 5.34; N, 4.39. 1H NMR (500 MHz, THF-d8, 25 °C, TMS): δ
9.01 (t, 1H, Py−Hp), 8.89 (d, 2H, Py−Hm), 7.17 (m, 6H, Ar−H), 3.05
(sept, 4H, CH(CH3)2), 2.70 (s, 3H, NC−CH3), 2.30 (s, 3H, N
C−CH3′), 1.16 (m, 24H, CH(CH3)2) ppm. 13C NMR (500 MHz,
THF-d8, TMS, 25 °C): δ 147.04 (NC), 138.25 (Py−Co), 136.25
(Ar−Cip), 135.69 (Ar−Co), 133.75 (Ar−Cp), 125.02 (Py−Cp), 122.57
(Py−Cm), 122.30 (Ar−Cm), 28.32 (NC−CH3), 27.36 (NC−
CH3′), 24.21 (CH(CH3)2), 23.21(CH′(CH3)2), 18.15 (CHCH3),
17.35 (CHCH3′) ppm. 119Sn NMR (500 MHz, THF-d8, Me4Sn, 25
°C): δ −60.27 and −435.07 ppm. EI-MS: m/z (%) 636 (100)
[(LB)SnCl]+, 224 (100) [SnCl3]+.
Crystal Structure Determination. Suitable single crystals for
X-ray structural analysis of compounds 1 and 2 were mounted at low
temperature under nitrogen atmosphere by applying the X-TEMP-2
device.21 The diffraction data for compound 1 were collected at 100 K
on Bruker TXS-Mo rotating anode with Helios mirror optics and an
APEX II detector with D8 goniometer. Data for 2 were collected at
100 K on SMART APEX Quazar with INCOATEC Ag microsource
with mirror optics (λ = 0.56086 Å). The data were integrated with
SAINT22 and an empirical absorption correction with TWINABS23 for
1 and SADABS24 for 2 was applied. The structures were solved by
direct methods (SHELXS-97) and refined against all data by full-
matrix least-squares methods on F2 (SHELXLE v 0.477).25 All non-
hydrogen-atoms were refined with anisotropic displacement parame-
ters. The hydrogen atoms were refined isotropically on calculated posi-
tions using a riding model with their Uiso values constrained to 1.5 Ueq
of their pivot atoms for terminal sp3 carbon atoms and 1.2 times for all
other carbon atoms (Table 1).
(2) (a) Mandal, S. K.; Roesky, H. W. Chem. Commun. 2010, 46,
6016−6041. (b) Nava, M.; Reed, C. A. Organometallics 2011, 30,
4798−4800. (c) Muller, T. Adv. Organomet. Chem. 2005, 53, 155−215.
̈
(d) West, R.; Moser, D. F.; Guzei, I. A.; Lee, G.-H.; Naka, A.; Li, W.;
Zabula, A.; Bukalov, S.; Leites, L. Organometallics 2006, 25, 2709−
2711. (e) Jutzi, P.; Burford, N. Chem. Rev. 1999, 99, 969−990.
(f) Krummenacher, I.; Oschwald, C.; Ruegger, H.; Breher, F. Z. Anorg.
̈
Allg. Chem. 2007, 633, 2354−2361.
(3) (a) Willey, G. R.; Somasundaram, U.; Aris, D. R.; Errington, W.
Inorg. Chim. Acta 2001, 315, 191−195. (b) Adley, A. D.; Bird, P. H.;
Fraser, A. R.; Onyszchuk, M. Inorg. Chem. 1972, 11, 1402−1409.
(c) Ejfler, J.; Szafert, S.; Jiao, H.; Sobota, P. New J. Chem. 2002, 26,
803−805. (d) Cheng, F.; Davis, M. F.; Hector, A. L.; Levason, W.;
Reid, G.; Webster, M.; Zhang, W. Eur. J. Inorg. Chem. 2007, 2488−
2495. (e) Cheng, F.; Davis, M. F.; Hector, A. L.; Levason, W.; Reid, G.;
Webster, M.; Zhang, W. Eur. J. Inorg. Chem. 2007, 4897−4905.
(4) (a) Bellamy, F. D.; Ou, K. Tetrahedron Lett. 1984, 25, 839−842.
(b) Zheng, L.; Wang, B.; Chi, Y.; Song, S.; Fan, C.; Chen, G. Dalton
Trans. 2012, 41, 1630−1634.
(5) Parshall., G. W. J. Am. Chem. Soc. 1972, 94, 8716−8719.
(6) (a) Schafer, A.; Saak, W.; Haase, D.; Muller, T. Chem.Eur. J.
̈
̈
2009, 15, 3945−3950. (b) Gaspar, P. P. In Organosilicon Chemistry VI;
Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, Germany, 2005; Vol.
2, p 10.
(7) (a) Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc.
1991, 113, 361−363. (b) Bourissou, D.; Guerret, O.; Gabbai, F. P.;
Bertrand, G. Chem. Rev. 2000, 100, 39−92. (c) Martin, D.; Melaimi, M.;
Soleilhavoup, M.; Bertrand, G. Organometallics 2011, 30, 5304−5313.
(8) (a) Lee, V. Y.; Sekiguchi, A. Acc. Chem. Res. 2007, 40, 410−419.
(b) Stender, M.; Phillips, A. D.; Power, P. P. Inorg. Chem. 2001, 40,
5314−5315. (c) Dias, H. V. R.; Wang, Z. J. Am. Chem. Soc. 1997, 119,
4650−4655. (d) Steiner, A.; Stalke, D. Inorg. Chem. 1995, 34, 4846−
4853. (e) Rupar, P. A.; Staroverov, V. N.; Ragogna, P. J.; Baines, K. M.
J. Am. Chem. Soc. 2007, 129, 15138−15139. (f) Apostolico, L.; Mahon,
M. F.; Molloy, K. C.; Binions, R.; Blackman, C. S.; Carmalt, C. J.;
Parkin, I. P. Dalton Trans. 2004, 470−470.
ASSOCIATED CONTENT
■
S
* Supporting Information
CIF files for 1 and 2, solution-state 119Sn NMR, and molecular
structure of 2. This material is available free of charge via the
AUTHOR INFORMATION
■
Corresponding Author
(9) Rupar, P. A.; Bandyopdhayay, R.; Cooper, B. F. T.; Stinchcombe,
M. R.; Ragogna, P. J.; Macdonald, C. L. B.; Baines, K. M. Angew.
Chem., Int. Ed. 2009, 48, 5155−5158.
Notes
The authors declare no competing financial interest.
5002
dx.doi.org/10.1021/ja300563g | J. Am. Chem. Soc. 2012, 134, 4998−5003