Organic Letters
Letter
product is 2-hydroxy-3-chlorotetrahydrofuran.12 This suggests
that the mode of oxidation to lactone 3 is specific to the
particular structural features present in 10. It is reasonable to
propose that coordination of the alkene to Pd(II) is facilitated
by the furan oxygen such that it proceeds from the concave face
of 10 to give the complex 12 (Scheme 3). Metalation proceeds
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and NMR data (PDF)
Scheme 3. Proposed Mechanism for Selective Enol−Ether
Oxidation to Lactone 3 under Wacker Conditions
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the EPSRC Bristol Chemical Synthesis Doctoral
Training Centre (EP/G036764/1) and Syngenta for Ph.D.
studentship funding (M.J.R.).
REFERENCES
■
(1) (a) Tuchinda, P.; Munyoo, B.; Pohmakotr, M.; Thinapong, P.;
Sophasan, S.; Santisuk, T.; Reutrakul, V. J. Nat. Prod. 2006, 69, 1728−
1733. (b) Wu, Y.-C.; Duh, C.-Y.; Chang, F.-R.; Chang, G.-Y.; Wang,
S.-K.; Chang, J.-J.; McPhail, D. R.; McPhail, A. T.; Lee, K.-H. J. Nat.
Prod. 1991, 54, 1077−1081.
(2) (a) Pal, P.; Shaw, A. K. Tetrahedron 2011, 67, 4036−4047.
(b) Sharma, G.; Mallesham, S. Tetrahedron: Asymmetry 2010, 21,
2646−2658. (c) Prasad, K. R.; Gholap, S. L. J. Org. Chem. 2008, 73, 2−
to give oxonium ion 13, which is unable to undergo syn β-
hydride elimination and as such is attacked by water from the
convex face to give 14. This then undergoes β-hydride
elimination to the enol 15 and then tautomerization to 3.
In conclusion, we have developed a short and scalable
synthesis of (+)-goniofufurone (1) in just five steps from the
enantiopure enol ether 4, itself a readily available starting
material sourced from the abundant and low cost sugar
derivative D-isosorbide. Key features include formation of the
11. (d) Bruns, R.; Wernicke, A.; Koell, P. Tetrahedron 1999, 55, 9793−
̈
́
9800. (e) Surivet, J.-P.; Vatele, J.-M. Tetrahedron Lett. 1996, 37, 4373−
4376. (f) Yang, Z.-C.; Zhou, W. S. Tetrahedron 1995, 51, 1429−1436.
(g) Murphy, P. J.; Dennison, S. T. Tetrahedron 1993, 49, 6695−6700.
(h) Shing, T. K. M.; Tsui, H.-C.; Zhou, Z.-H. J. Chem. Soc., Chem.
Commun. 1992, 810−811.
(3) (a) Benedekovic,
́
G.; Francuz, J.; Kovacevic, I.; Popsavin, M.;
G.; Didjakovic, V.; Popsavin, V. Eur. J.
Sreco, B.; Kojic, V.; Bogdanovic,
́
Med. Chem. 2014, 82, 449−458. (b) Popsavin, V.; Sreco, B.;
Benedekovic, G.; Francuz, J.; Popsavin, M.; Kojic, V.; Bogdanovic,
G. Eur. J. Med. Chem. 2010, 45, 2876−2883. (c) Popsavin, V.;
Benedekovic, G.; Sreco, B.; Francuz, J.; Popsavin, M.; Kojic, V.;
Bogdanovic, G.; Divjakovic, V. Tetrahedron 2009, 65, 10596−10607.
(4) (a) Jones, G. Org. Photochem. 1981, 5, 1−122. (b) Bach, T.
oxetane 7 by a photochemical Paterno−Buchi reaction. The
̀
̈
batch limitations of this step were overcome by the use of a
flow photoreactor allowing the synthesis of >40 g of
intermediates in a single run. Considering the issues faced in
subsequent steps, there is no doubt that it would have been
extremely difficult to complete a meaningful total synthesis of 1
Liebigs Ann., Receuil 1997, 1997, 1627−1634. (c) Bach, T.; Jodicke, K.;
̈
without this level of productivity in the Paterno−Buchi step.
̀
̈
Kather, K.; Frohlich, R. J. Am. Chem. Soc. 1997, 119, 2437−2445.
̈
(d) Bach, T.; Kather, K.; Kramer, O. J. Org. Chem. 1998, 63, 1910−
This highlights the power of flow chemistry techniques when
applied to the up-scaling of photochemistry, an area that is
often criticized for low productivity levels. Due to the acid
sensitivity of the oxetane ring, we were faced with a seemingly
intractable enol ether to lactone oxidation problem (10 to 3),
only to find that a Pd(II) Wacker type oxidation was surprising
effective. This novel Pd(II)-catalyzed transformation appears to
be specific to 10 as enol ethers are traditionally oxidized to
enones under Wacker conditions. Finally this study should
allow for the production of quantities of the oxetane−lactone 3
and the chloro lactone 11 as key intermediates for the synthesis
of C-7 analogues of (+)-goniofufurone as part of a possible
cancer drug-discovery program. For example, as the synthetic
oxetane 2 prepared by Popsavin3 has displayed high
cytotoxicity against human cell lines, access to large quantities
̈
1918. (e) Bach, T.; Brummerhop, H. Angew. Chem., Int. Ed. 1998, 37,
3400−3402. (f) Griesbeck, A. G.; Bondock, S. CRC Handbook of
Photochemistry and Photobiology, 2nd ed.; Horspool, W. M., Lenci, F.,
Eds.; CRC Press: Boca Raton, 2004; Vol. 59, 1 and 19. (g) D’Auria,
M.; Racioppi, R. Molecules 2013, 18, 11384−11428. (h) Bach, T.;
Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000−1045.
(5) Burkhard, J. A.; Wuitschik, G.; Rogers-Evans, M.; Muller, K.;
̈
Carreira, E. M. Angew. Chem., Int. Ed. 2010, 49, 9052−9067.
(6) Griesbeck, A. G.; Stadtmuller, S. J. Am. Chem. Soc. 1990, 112,
̈
1281.
(7) Elliott, L. D.; Knowles, J. P.; Koovits, P. J.; Maskill, K. G.; Ralph,
M. J.; Lejeune, G.; Edwards, L. J.; Robinson, R. I.; Clemens, I. R.; Cox,
B.; Pascoe, D. D.; Koch, G.; Eberle, M.; Berry, M. B.; Booker-Milburn,
K. I. Chem. - Eur. J. 2014, 20, 15226−15232.
(8) Berini, C.; Lavergne, A.; Molinier, V.; Capet, F.; Deniau, E.;
Aubry, J.-M. Eur. J. Org. Chem. 2013, 2013, 1937−1949.
(9) Piancatelli, G.; Scettri, A.; D’Auria, M. Tetrahedron Lett. 1977, 18,
3483−3484.
of 3 and other Paterno−
̀
Buchi-derived oxetanes could prove to
be medicinally important.
̈
C
Org. Lett. XXXX, XXX, XXX−XXX