S. Matsunaga and M. Shibasaki, J. Am. Chem. Soc., 2011, 133, 5791–
5793; (e) S. Stanković, M. D’hooghe and N. De Kimpe, Org. Biomol.
Chem., 2010, 8, 4266–4273.
4 (a) S. Florio and R. Luisi, Chem. Rev., 2010, 110, 5128–5157;
(b) D. M. Hodgson and C. D. Bray, in Aziridine and Epoxides in Organic
Synthesis, ed. A. K. Yudin, Wiley-VCH Verlag GmbH, Weinheim, 2006,
ch. 5, pp. 145–184.
5 (a) S. Stankovic, M. D’hooghe, S. Catak, H. Eum, M. Waroquier, V. Van
Speybroeck, N. De Kimpe and H.-J. Ha, Chem. Soc. Rev., 2012, 41, 643;
(b) H. Goossens, K. Vervisch, S. Catak, S. Stankovic, M. D’hooghe,
F. De Proft, P. Geerlings, N. De Kimpe, M. Waroquier and V. Van Spey-
broeck, J. Org. Chem., 2011, 76, 8698–8709.
15 (a) T. Shono, N. Kise, E. Shirakawa, H. Matsumoto and E. Okazaki,
J. Org. Chem., 1991, 56, 3063–3067; (b) S. Niwa and K. Soai, J. Chem.
Soc., Perkin Trans. 1, 1991, 2717–2720; (c) J. Eriksson, P. I. Arvidsson
and O. Davidsson, Chem.–Eur. J., 1999, 5, 2356–2361.
16 Piperazines 2a–d with a cis relationship between substituents in 2,5 pos-
itions (axial–equatorial relationship) were mixtures of two enantiomers.
Instead, a trans substitution (diequatorial relationship) gave meso pipera-
zines 2a–d.
17 The 1H NMR analysis revealed characteristic spectroscopic patterns for
piperazines 2a–d and meso-2a–d. In particular, racemic 2a–d always
showed a deshielded benzylic CH proton (3.5–3.8 ppm) with respect to
meso-2a–d (3.2–3.6 ppm) (see the ESI†).
6 (a) B. Kang, A. W. Miller, S. Goyal and S. T. Nguyen, Chem. Commun.,
2009, 3928–3930; (b) S. Gandhi, A. Bisai, B. A. B. Prasad and
V. K. Singh, J. Org. Chem., 2007, 72, 2133–2142; (c) M. K. Ghorai and
K. Ghosh, Tetrahedron Lett., 2007, 48, 3191–3195; (d) V. K. Yadav and
V. Sriramurthy, J. Am. Chem. Soc., 2005, 127, 16366–16367.
7 P. Dauban and G. Malik, Angew. Chem., Int. Ed., 2009, 48, 9026–9029.
8 (a) M. K. Ghorai, A. K. Sahoo and A. Kumar, Org. Lett., 2011, 13,
4256–4259; (b) M. K. Ghorai, A. Kumar and D. P. Tiwari, J. Org.
Chem., 2010, 75, 137–151.
18 Attempts to use N-alkylaziridines bearing a C2-alkyl group failed, and
only complex mixtures were recovered.
19 The relative stereochemistry was assigned by comparison of the 1H NMR
chemical shifts of the benzylic protons (see ref. 16).
20 The absolute configuration of chiral piperazine (R,R)-2a was confirmed
by comparison of the optical rotation of the corresponding mono hydro-
chloride ([α]D −56.6, c 0.15, H2O), with the reported value ([α]D −64.0,
c 0.3, H2O); (see K. Fuji, K. Tanaka and H. Miyamoto, Tetrahedron:
Asymmetry, 1993, 4, 247–259).
9 The reported examples of 1,3-dipolar cycloaddition from N-alkylaziri-
dines involve azomethine ylides obtained by a C–C bond cleavage see:
(a) I. Coldham and R. Hufton, Chem. Rev., 2005, 105, 2765–2809;
(b) G. Pandey, P. Banerjee and S. R. Gadre, Chem. Rev., 2006, 106,
4484–4517; (c) J. Danielsson, L. Toom and P. Somfai, Eur. J. Org.
Chem., 2011, 607–613; (d) W. Van Brabandt, Y. Dejaegher, R. Van Land-
eghem and N. De Kimpe, Org. Lett., 2006, 8 (6), 1101–1104.
10 (a) U. Azzena, G. Dettori, L. Pisano, B. Musio and R. Luisi, J. Org.
Chem., 2011, 76, 2291–2295; (b) Y. Dong, H. Yun, C. S. Park, W.-K. Lee
and H.-J. Ha, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2003,
59, 659–660.
11 C. Dick, J. Org. Chem., 1967, 32, 72–75.
12 N. De Kimpe and D. De Smaele, Tetrahedron Lett., 1994, 35 (43), 8023–
8026.
13 (a) Z.-Z. Yang, L.-N. He, S.-Y. Peng and A.-H. Liu, Green Chem., 2010,
12, 1850–1854; (b) Y. Wu, L.-N. He, Y. Du, J.-Q. Wang, C.-X. Miao and
W. Li, Tetrahedron, 2009, 65, 6204–6210.
21 Opposite optical rotation values were found for (S,S)-2a ([α]D +56.4,
c 0.5, CHCl3) and (R,R)-2a ([α]D −56.4, c 0.5, CHCl3).
22 It is likely that the ortho substituent could affect the reaction stereoselec-
tivity (see mechanism and ref. 25).
23 An ESI-MS analysis of the reaction mixture collected directly from the
NMR tube revealed the presence of the bromo amines.
24 It has been demonstrated that, with a stoichiometric amount of MgBr2,
the work-up procedure with water always gave a mixture of piperazines
and starting aziridine so justifying the results reported in Table 1 with 1
equiv. of MgBr2.
25 Examples of MgBr2-mediated ring opening of activated aziridines have
been reported, see: G. Righi, T. Franchini and C. Bonini, Tetrahedron
Lett., 1998, 39, 2385–2388.
26 Aziridine (S)-1a should attack mainly the terminal position of 3. Attack
at the benzylic position, occurring with inversion of configuration, would
give (S,R)-7 which would generate (S,R)-2,6-disubstituted piperazine (not
observed) and (R,R)-2a to a small extent.
14 For examples, see: (a) M. L. Lopez-Rodriguez, D. Ayala, B. Benhamu,
M. J. Morcillo and A. Viso, Curr. Med. Chem., 2002, 9, 443–469;
(b) Y. Zhang, R. B. Rothman, C. M. Dersch, B. R. de Costa,
A. E. Jacobson and K. C. Rice, J. Med. Chem., 2000, 43, 4840–4849;
(c) K. Samanta and G. Panda, Chem.–Asian J., 2011, 6, 189–197;
(d) M. Matsuo, D. Hagiwara, T. Manabe, N. Konishi, S. Shigenaga,
K. Murano, H. Matsuda and H. Miyake (Fujisawa Pharmaceuticals)
WO9637489A1, 1996.
27 Nucleophilic attack at the benzylic position would lead to (S,R)-2,6-dis-
ubstituted piperazine which has not been observed.
28 Nucleophilic attack at the terminal position would lead to (S,S)-2,6-disub-
stituted piperazine which has not been observed.
29 However, we cannot rule out the regioselective ring opening of the aziri-
dinium ions of (S,S)-6,7 by the bromide, followed by an intramolecular
nucleophilic substitution. For a similar example see: M. Yu. Moskalik
and B. A. Shainyan, Russ. J. Org. Chem., 2011, 47, 568–571.
This journal is © The Royal Society of Chemistry 2012
Org. Biomol. Chem., 2012, 10, 1962–1965 | 1965