ORGANIC
LETTERS
2012
Vol. 14, No. 6
1520–1523
Native Chemical Ligation at Glutamine
Peter Siman, Subramanian Vedhanarayanan Karthikeyan, and Ashraf Brik*
Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, 84105,
Israel
Received January 31, 2012
ABSTRACT
The desulfurization reaction introduced by Yan and Dawson as a postnative chemical ligation step greatly expanded the scope of ligation
chemistry beyond Xaa-Cys (Xaa is any amino acid) by making ligation at Xaa-Phe, Xaa-Val, Xaa-Lys, Xaa-Leu, Xaa-Thr, and Xaa-Pro junctions
accessible in the synthesis of functional proteins. A new ligation site based on Xaa-Gln utilizing γ-mercaptoglutamine is reported, and several
examples on the efficiency of ligation coupled with desulfurization are provided.
The combination of native chemical ligation (NCL)1
and global desulfurization2 has significantly increased our
ability to chemically synthesize proteins for biochemical
and structural analyses.3 To achieve this, an amino acid at
the desired ligation junction is modified at the β- or
γ-carbon with a thiol group to enable transthioesterification
with a peptide thioester and subsequent SÀN acyl transfer
via a favorable five- or six-membered ring to form the
backbone amide bond between the two peptides. The use
of Xaa-Ala (Xaa is any amino acid) ligation sites by
replacing Ala with Cys to enable NCL followed by a
selective reduction of the thiol group on Cys2 has inspired
the development of several other ligation junctions that
include Xaa-Phe,4 Xaa-Val,5 Xaa-Leu,6 Xaa-Thr,7 Xaa-
Pro,8 and Xaa-Lys.9 Several desulfurization conditions
such as nickel boride,2 Pd/Al2O3,10 and metal-free con-
ditions11 were found suitable to achieve efficient reduc-
tion. More recently, performing ligation and desulfuriza-
tion in situ was also reported.12 Moreover, carrying out
desulfurization in the presence of Cys residues is possible
thanks to the use of orthogonal protecting groups on the
Cys10,13 or by using selective deselenization in the presence
of unprotected Cys.14 Exploiting NCL principles, SÀN
(7) Chen, J.; Wang, P.; Zhu, J.; Wan, Q.; Danishefsky, S. J. Tetra-
hedron 2010, 66, 2277.
(8) (a) Shang, S.; Tan, Z.; Dong, S.; Danishefsky, S. J. J. Am. Chem.
Soc. 2011, 133, 10784. (b) Ding, H.; Shigenaga, A.; Sato, K.; Morishita,
K.; Otaka, A. Org. Lett. 2011, 13, 5588.
(9) (a) Kumar, K. S. A.; Haj-Yahya, M.; Olschewski, D.; Lashuel,
H. A.; Brik, A. Angew. Chem., Int. Ed. 2009, 48, 8090. (b) Yang, R.;
Pasunooti, K. K.; Li, F.; Liu, X.-W.; Liu, C.-F. J. Am. Chem. Soc. 2009,
131, 13592.
(10) Yang, Y. Y.; Ficht, S.; Brik, A.; Wong, C. H. J. Am. Chem. Soc.
2007, 129, 7690.
(1) Dawson, P. E.; Muir, T. W.; Clark-Lewis, l.; Kent, S. B. H.
Science 1994, 266, 776.
(2) Yan, L. Z.; Dawson, P. E. J. Am. Chem. Soc. 2001, 123, 526.
(3) (a) Kumar, K. S. A.; Brik, A. J. Pept. Sci. 2010, 16, 524. (b)
Rohde, H.; Seitz, O. Biopolymers 2010, 94, 551. (c) Payne, R. J.; Wong,
C.-H. Chem. Commun. 2010, 46, 21. (d) Dawson, P. E. Isr. J. Chem. 2011,
51, 862.
(11) (a) Wan, Q.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2007, 46,
9248. (b) Haase, C.; Seitz, O. Angew. Chem., Int. Ed. 2008, 47, 1553.
(12) Siman, P.; Blatt, O.; Moyal, T.; Danieli, T.; Lebendiker, M.;
Lashuel, H. A.; Friedler, A.; Brik, A. ChemBioChem 2011, 12, 1097.
(13) Pentelute, B. L.; Kent, S. B. H. Org. Lett. 2007, 9, 687.
(14) Metanis, N.; Keinan, E.; Dawson, P. E. Angew. Chem., Int. Ed.
2010, 49, 7049.
(4) Crich, D.; Banerjee, A. J. Am. Chem. Soc. 2007, 129, 10064.
(5) (a) Haase, C.; Rohde, H.; Seitz, O. Angew. Chem., Int. Ed. 2008,
47, 6807. (b) Chen, J.; Wan, Q.; Yuan, Y.; Zhu, J.; Danishefsky, S. J.
Angew. Chem., Int. Ed. 2008, 47, 8521.
(6) (a) Harpaz, Z.; Siman, P.; Kumar, K. S. A.; Brik, A. ChemBio-
Chem 2010, 11, 1232. (b) Tan, Z.; Shang, S.; Danishefsky, S. J. Angew.
Chem., Int. Ed. 2010, 49, 9500.
r
10.1021/ol300254y
Published on Web 02/24/2012
2012 American Chemical Society