ORGANIC
LETTERS
2012
Vol. 14, No. 6
1548–1551
Dehydrative Fragmentation of
5-Hydroxyalkyl-1H-tetrazoles: A Mild
Route to Alkylidenecarbenes
Duncan J. Wardrop* and John P. Komenda
Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street,
Chicago, Illinois 60607-7061, United States
Received February 3, 2012
ABSTRACT
The development of a mild, base-free method for the generation of alkylidenecarbenes is reported. Treatment of 5-hydroxyalkyl-1H-tetrazoles with
carbodiimides generates products arising from the 1,2-rearrangement or [1,5]-CÀH bond insertion of a putative alkylidenecarbene. Formation of
this divalent intermediate is proposed to occur by way of a tetraazafulvene, which undergoes extrusion of 2 mol of dinitrogen. Details of this
methodology, its application to the synthesis of combretastatin A-4, and an improved route to 5-hydroxyalkyl-1H-tetrazoles are described.
1H-Tetrazoles have long been recognized as metaboli-
cally stable bioisosteres of the carboxylate group for
which reason they have found widespread application
in medicinal chemistry.1 Our interest in these nitrogen-
rich heterocycles, however, stems from their chemical
instability2,3 and attendant potential as precursors of
alkylidenecarbenes: transient, electron-deficient spe-
cies, which undergo a number of synthetically valuable
reactions, including [1,2]-rearrangement, ylide forma-
tion, alkene cyclopropanation and [1,5]-CÀH bond
insertion.4 Over the past decade, we have studied
the latter transformation as a means to access O- and
N-heterocycles and natural products that encompass
these ring systems.5
Synthetic potential notwithstanding, the practical value
of alkylidenecarbenes remains limited by a deficiency of
methods for their generation under nonbasic conditions.6
Although a number of noteworthy solutions to this issue
have been reported, including the thermolysis of epoxya-
ziridinyl imines7 and addition of “soft” nucleophiles to
alkynyl(phenyl)iodonium salts,8 the continued develop-
ment of new methods appears to be warranted. In this
context, we were intrigued by a rarely cited report from
(5) (a) Wardrop, D. J.; Fritz, J. Org. Lett. 2006, 8, 3659. (b) Wardrop,
D. J.; Bowen, E. G. Chem. Commun. 2005, 5106. (c) Wardrop, D. J.;
Zhang, W.; Fritz, J. Org. Lett. 2002, 4, 489. (d) Wardrop, D. J.; Zhang,
W. Tetrahedron Lett. 2002, 43, 5389. (e) Wardrop, D. J.; Velter, A. I.;
Forslund, R. E. Org. Lett. 2001, 3, 2261.
(6) For representative examples of alkylidenecarbene generation
under strongly basic conditions, see: (a) Walsh, R. A.; Bottini, A. T.
J. Org. Chem. 1970, 35, 1086. (b) Stang, P. J.; Mangum, M., G.; Fox, D.,
P.; Haak, P. J. Am. Chem. Soc. 1974, 96, 4562. (c) Taber, D. F.; Christos,
T. E.; Neubert, T. D.; Batra, D. J. Org. Chem. 1999, 64, 9673. (d) Green,
M. P.; Prodger, J. C.; Sherlock, A. E.; Hayes, C. J. Org. Lett. 2001, 3,
3377. (e) Reference 5b.
(7) (a) Kim, S.; Cho, C. M. Tetrahedron Lett. 1994, 35, 8405. (b)
Kirmse, W. Eur. J. Org. Chem. 1998, 201.
(8) (a) Ochiai, M.; Kunishima, M.; Tani, S.; Nagao, Y. J. Am. Chem.
Soc. 1991, 113, 3135. (b) Williamson, B. L.; Tykwinski, R. R.; Stang,
P. J. J. Am. Chem. Soc. 1994, 116, 93. (c) Feldman, K. S. In Strategies and
Tactics in Organic Synthesis; Harmata, M., Ed.; Elsevier Academic Press:
London, 2004; Vol. 4, p 133. (d) Reference 5c.
(1) For reviews of the medicinal chemistry of 1H-tetrazoles, see: (a)
Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl.
Compd. 2007, 43, 1. (b) Herr, J. R. Bioorg. Med. Chem. 2002, 10, 3379.
(2) In this context, tetrazoles play a key role in many modern high-
€
energy density materials (HEDM): Klapotke, T. M., Structure and
Bonding (Berlin); Springer: Berlin/Heidelberg, Germany, 2007; Vol. 125,
p 85.
(3) For a review of the thermal decomposition of tetrazoles, see:
Lesnikovich, A. I.; Levchik, S. V.; Balabanovich, A. I.; Ivashkevich,
O. A.; Gaponik, P. N. Thermochim. Acta 1992, 200, 427.
(4) For reviews of alkylidenecarbene chemistry and the FritschÀ
ButtenbergÀWiechell (FBW) rearrangement, see: (a) Jahnke, E.; Tyk-
winski, R. R. Chem. Commun. 2010, 3235. (b) Knorr, R. Chem. Rev.
2004, 104, 3795. (c) Kirmse, W. Angew. Chem., Int. Ed. Engl. 1997, 36 (6),
1164. (d) Taber, D. F. In Methods of Organic Chemistry, 4th ed.;
Helmchen, G., Ed.; Georg Thieme Verlag: New York, 1995; Vol. E21,
p 1127. (e) Stang, P. J. Angew. Chem., Int. Ed. Engl. 1992, 31, 274. (f)
Stang, P. J. Chem. Rev. 1978, 78, 383.
r
10.1021/ol300276p
Published on Web 02/28/2012
2012 American Chemical Society