1726
T. C. Efthymiou et al. / Bioorg. Med. Chem. Lett. 22 (2012) 1722–1726
3. (a) Manoharan, M. Biochim. Biophys. Acta 1999, 1489, 117; (b) Corey, D. R. J. Clin.
Invest. 2007, 117, 3615; (c) Watts, J. K.; Deleavey, G. F.; Damha, M. J. Drug
Discovery Today 2008, 13, 842.
compatible within the RNAi pathway, albeit at reduced silencing
efficiency compared to wild-type.
To determinewhetherthis novel chemicalmodificationwould be
amenable to endogenous targets, we synthesized and investigated
the effect that our triazole backbone-modified siRNA would have
on reducing the expression of glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH). We synthesized three siRNAs bearing a UtU tri-
azole modification (siRNAs 24–26). The siRNAs each contained a
single UtU modification placed either at positions 17–18, 18–19, or
at the 3’-UtU overhang of the sense strand (Table 2). The data from
Figure 3 illustrates that our triazole-linked siRNAs show a dose-
dependent downregulation of GAPDH at 10 and 20 nM comparable
to wild-type (siRNA 23). This result is significant because it high-
lights that our novel chemically modified siRNAs are capable of
silencing relevant endogenous targets.
In conclusion, we are reporting the practical synthesis of siRNAs
bearing triazoles interspersed throughout the backbone via DMT-
phosphoramidite chemistry. Monomers 3 and 5 were readily syn-
thesized through standard amide-bond coupling conditions. Via
click chemistry, the final triazole-linked CtU dimer phosphorami-
dite 8 was synthesized with an overall yield of 33% from monomers
3 and 5. All RNA duplexes are substrates for the RNAi pathway.
Therefore, a triazole in place of a phosphodiester backbone shows
compatibility within siRNA duplexes and suggests that other novel
backbone modifications may also act as proper substrates. To the
best of our knowledge, there are no other reports of nonionic
hydrophobic backbone mimics that silence gene expression when
positioned within the internal Watson–Crick double-stranded re-
gion of siRNAs.
4. (a) Dowler, T.; Bergeron, D.; Tedeschi, A.-L.; Paquet, L.; Ferrari, N.; Damha, M. J.
Nucleic Acids Res. 2006, 34, 1669; (b) Braasch, D. A.; Jensen, S.; Liu, Y.; Kaur, K.;
Arar, K.; White, M. A.; Corey, D. R. Biochemistry 2003, 42, 7967; (c) Saneyoshi,
H.; Seio, K.; Sekine, M. J. Org. Chem. 2005, 70, 10453; (d) Chiu, Y. L.; Rana, T. M.
RNA 2003, 9, 1034; (e) Elmén, J.; Thornberg, H.; Ljungberg, K.; Frieden, M.;
Westergaard, M.; Xu, Y.; Wahren, B.; Liang, Z.; Ørum, H.; Koch, T.; Wahlestedt,
C. Nucleic Acids Res. 2005, 33, 439; (f) Ueno, Y.; Hirai, M.; Yoshikawa, K.;
Kitamura, Y.; Hirata, Y.; Kiuchi, K.; Kitade, Y. Tetrahedron 2008, 64, 11328; (g)
Manoharan, M.; Akinc, A.; Pandey, R. K.; Qin, J.; Hadwiger, P.; John, M.; Mills, K.;
Charisse, K.; Maier, M. A.; Nechev, L.; Greene, E. M.; Pallan, P. S.; Rozners, E.;
Rajeev, K. G.; Egli, M. Angew. Chem. Int. Ed. 2011, 50, 2284; (h) Zhang, N.; Tan,
C.; Cai, P.; Zhang, P.; Zhao, Y.; Jiang, Y. Bioorg. Med. Chem. 2009, 17, 2441.
5. (a) Somoza, A.; Silverman, A. P.; Miller, R. M.; Chelliserrykattil, J.; Kool, E. T.
Chemistry 2008, 14, 7978; (b) Xia, J.; Noronha, A.; Toudjarska, I.; Li, F.; Akinc, A.;
Braich, R.; Frank-Kamenetsky, M.; Rajeev, K. G.; Egli, M.; Manoharan, M. ACS
Chem. Biol. 2006, 1, 176.
6. Amarzguioui, M.; Holen, T.; Babaie, E.; Prydz, H. Nucleic Acids Res. 2003, 31, 589.
7. Hall, A. H. S.; Wan, J.; Shaughnessy, E. E.; Shaw, B. R.; Alexander, K. A. Nucleic
Acids Res. 2004, 32, 5991.
8. Iwase, R.; Toyama, T.; Nishimori, K. Nucleosides Nucleotides Nucleic Acids 2007,
26, 1451.
9. Potenza, N.; Moggio, L.; Milano, G.; Salvatore, V.; Di Blasio, B.; Russo, A.;
Messere, A. Int. J. Mol. Sci. 2008, 9, 299.
10. Wang, Y.; Juranek, S.; Li, H.; Sheng, G.; Tuschl, T.; Patel, D. J. Nature 2008, 456,
921.
11. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. Int. Ed.
2002, 41, 2596.
12. (a) Isobe, H.; Fujino, T.; Yamazaki, N.; Guillot-Nieckowski, M.; Nakamura, E.
Org. Lett. 2008, 10, 3729; (b) Lucas, R.; Neto, V.; Bouazza, A. H.; Zerrouki, R.;
Granet, R.; Krausz, P.; Champavier, Y. Tetrahedron Lett. 2008, 49, 1004; (c)
Fujino, T.; Yamazaki, N.; Isobe, H. Tetrahedron Lett. 2009, 50, 4101; (d) Chittepu,
P.; Sirivolu, V. R.; Seela, F. Bioorg. Med. Chem. 2008, 16, 8427; (e)
Chandrasekhar, S.; Srihari, P.; Nagesh, C.; Kiranmai, N.; Nagesh, N.; Idris, M.
M. Synthesis 2010, 21, 3710; (f) El-Sagheer, A. H.; Brown, T. J. Am. Chem. Soc.
2009, 131, 3958; (g) Chouikhi, D.; Barluenga, S.; Winssinger, N. Chem. Commun.
2010, 46, 5476; (h) Varizhuk, A.; Chizhov, A.; Florentiev, V. Bioorg. Chem. 2011,
39, 127.
13. El-Sagheer, A. H.; Brown, T. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 15329.
14. (a) Parades, E.; Das, S. R. Chembiochem 2011, 12, 125; (b) Mutisya, D.; Selvam,
C.; Kennedy, S. D.; Rozners, E. Bioorg. Med. Chem. Lett. 2011, 21, 3420.
15. Efthymiou, T. C.; Desaulniers, J.-P. J. Heterocycl. Chem. 2011, 48, 533.
16. Vader, J.; Sengers, H.; de Groot, A. Tetrahedron 1989, 45, 2131.
17. (a) Christensen, L.; Hansen, H. F.; Koch, T.; Nielsen, P. E. Nucleic Acids Res. 1998,
26, 2735; (b) Schwergold, C.; Depecker, G.; Di Giorgio, C.; Patino, N.; Jossinet, F.;
Ehresmann, B.; Terreux, R.; Cabrol-Bass, D.; Condom, R. Tetrahedron 2002, 58,
5675.
Acknowledgments
We acknowledge the National Sciences and Engineering Re-
search Council and the Canada Foundation for Innovation for
funding.
Supplementary data
18. Liu, X. J.; Chen, R. Y.; Weng, L. H.; Leng, X. B. Heteroatom Chem. 2000, 11, 422.
19. Petersheim, M.; Turner, D. H. Biochemistry 1983, 22, 256.
20. Bajor, Z.; Sági, G.; Tegyey, Z.; Kraicsovits, F. Nucleosides Nucleotides Nucleic Acids
2003, 22, 1963.
Supplementary data associated with this article can be found, in
21. (a) Schwarz, D. S.; Hutvágner, G.; Du, T.; Xu, Z.; Aronin, N.; Zamore, P. D. Cell
2003, 115, 199; (b) Addepalli, H.; Meena; Peng, C. G.; Wang, G.; Fan, Y.;
Charisse, K.; Jayaprakash, K. N.; Rajeev, K. G.; Pandey, R. K.; Lavine, G.; Zhang,
L.; Jahn-Hofmann, K.; Hadwiger, P.; Manoharan, M.; Maier, M. A. Nucleic Acids
Res. 2010, 38, 7320.
References and notes
1. Fire, A.; Xu, S. Q.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C.
Nature 1998, 391, 806.
2. (a) Hammond, S. M.; Bernstein, E.; Beach, D.; Hannon, G. J. Nature 2000, 404,
293; (b) Nykänen, A.; Haley, B.; Zamore, P. D. Cell 2001, 107, 309.
22. Somoza, A.; Terrazas, M.; Eritja, R. Chem. Commun. 2010, 46, 4270.