ARTICLES
16. Igau, A., Baceiredo, A., Trinquier, G. & Bertrand, G.
herein effectively expand the utility of carbenes in the construc-
tion of three-membered carbocycles and oxacycles. Additionally,
1 was found to undergo an unprecedented, formal [4 þ 1] cyclo-
addition with a,b-unsaturated ketones to afford dihydrofuran
derivatives rapidly. In light of the broad scope of olefins and alde-
hydes, and recalling that the DAC was constructed from readily
accessible and modular formamidine and malonyl precursors,
we envision that many derivatives of these cycloaddition partners
will be accessible using the methodology described above.
Furthermore, hydrolysis of the diamidocarbene cyclopropane 2h
afforded hydrocinnamic acid, a linear carboxylic acid, via a
formal metal- and carbon monoxide-free hydrocarboxylation of
styrene. Additional efforts to explore the utility of DACs in syn-
thesis and as masked carbon-monoxide equivalents are
in progress.
[Bis(diisopropylamino)phosphino]trimethylsilylcarbene: a stable nucleophilic
carbene. Angew. Chem. Int. Ed. 28, 621–622 (1989).
17. Khramov, D. M., Rosen, E. L., Lynch, V. M. & Bielawski, C. W.
Diaminocarbene[3]ferrocenophanes and their transition-metal complexes.
Angew. Chem. Int. Ed. 47, 2267–2270 (2008).
18. Lavallo, V. et al. Synthesis, reactivity, and ligand properties of a stable alkyl
carbene. J. Am. Chem. Soc. 126, 8670–8671 (2004).
19. Siemeling, U. et al. N-heterocyclic carbenes which readily add ammonia, carbon
monoxide and other small molecules. Chem. Sci. 1, 697–704 (2010).
20. Vignolle, J., Cattoe¨n, X. & Bourissou, D. Stable noncyclic singlet carbenes. Chem.
Rev. 109, 3333–3384 (2009).
21. Dro¨ge, T. & Glorius, F. The measure of all rings – N-heterocyclic carbenes.
Angew. Chem. Int. Ed. 49, 6940–6952 (2010).
22. Melami, M., Soleilhavoup, M. & Bertrand, G. Stable cyclic carbenes and
related species beyond diaminocarbenes. Angew. Chem. Int. Ed. 49,
8810–8849 (2010).
23. Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for
transition metal centers. Chem. Sci. 2, 389–399 (2011).
24. Enders, D. et al. Preparation, structure, and reactivity of 1,3,4-triphenyl-4,5-
dihydro-1H-1,2,4-triazol-5-ylidene, a new stable carbene. Angew. Chem. Int. Ed.
34, 1021–1023 (1995).
Beyond their synthetic utility, DACs were also found to enable
the first examples of reversible [2 þ 1] cycloaddition reactions that
proceed rapidly at relatively low temperatures, an advantage over
many other dynamic covalent reactions. This surprising discovery
is expected to initiate new fundamental studies and expand the
applications of stable carbenes to include uses as protecting
groups for olefins or aldehydes, or as latent sources of reactive inter-
mediates. Akin to other reversible cycloadditions, such as the Diels–
Alder reaction, reversible [2 þ 1] cycloaddition processes also hold
promise for use as the basis of structurally dynamic materials and
reversible covalent inhibitors, and to facilitate applications that
utilize dynamic combinatorial libraries (for example, sensor discov-
25. Goumri-Magnet, S., Kato, T., Gornitzka, H., Baceiredo, A. & Bertrand, G.
Stereoselectivity and stereospecificity of cyclopropanation reactions with stable
(phosphanyl)(silyl)carbenes. J. Am. Chem. Soc. 122, 4464–4470 (2000).
26. Krysiak, J. et al. The first asymmetric cyclopropanation reactions involving a
stable carbene. J. Org. Chem. 66, 8240–8242 (2001).
27. Krysiak, J. et al. Stable optically pure phosphino(silyl)carbenes: reagents for
highly enantioselective cyclopropanation reactions. Chem. Eur. J. 10,
1982–1986 (2004).
28. Martin, D. et al. Theoretical and experimental investigation of the basicity of
phosphino(silyl)carbenes. J. Org. Chem. 70, 5671–5677 (2005).
ery and development)49,50
.
´
´
29. Illa, O., Alvarez-Larena, A., Baceiredo, A., Branchadell, V. & Ortun˜o, R. M.
Highly stereoselective and easy synthesis of enantiopure phosphoranyl oxiranes.
Tetrahedron: Asymmetry 18, 2617–2620 (2007).
Methods
30. Illa, O., Bagan, X., Baceiredo, A., Branchadell, V. & Ortun˜o, R. M. Understanding
the p-facial diastereoselectivity in the addition of chiral
Detailed descriptions of experimental, spectroscopic and crystallographic methods
and results are provided in the Supplementary Information.
diaminophosphino(silyl)carbenes to activated olefins. Tetrahedron: Asymmetry
19, 2353–2358 (2008).
Received 19 July 2011; accepted 9 January 2012;
published online 12 February 2012
31. Hudnall, T. W. & Bielawski, C. W. An N,N′-diamidocarbene: studies in C–H
insertion, reversible carbonylation, and transition-metal coordination chemistry.
J. Am. Chem. Soc. 131, 16039–16041 (2009).
´
32. Cesar, V., Lugan, N. & Lavigne, G. Reprogramming of a malonic N-heterocyclic
References
carbene: a simple backbone modification with dramatic consequences on the
ligand’s donor properties. Eur. J. Inorg. Chem. 361–365 (2010).
33. Hudnall, T. W., Moorhead, E. J., Gusev, D. G. & Bielawski, C. W.
N,N′-diamidoketenimines via coupling of isocyanides to an N-heterocyclic
carbene. J. Org. Chem. 75, 2763–2766 (2010).
34. Hudnall, T. W., Moerdyk, J. P. & Bielawski, C. W. Ammonia N–H activation by a
N,N′-diamidocarbene. Chem. Commun. 46, 4288–4290 (2010).
35. Braun, M., Frank, W., Reiss, G. J. & Ganter, C. An N-heterocyclic carbene
with an oxalamide backbone. Organometallics 29, 4418–4420 (2010).
36. Hobbs, M. G. et al. The influence of electron delocalization upon the
stability and structure of potential N-heterocyclic carbene precursors with
1,3-diaryl-imidazolidine-4,5-dione skeletons. New J. Chem. 34,
1295–1308 (2010).
37. Hudnall, T. W., Tennyson, A. G. & Bielawski, C. W. A seven-membered
N,N′-diamidocarbene. Organometallics 29, 4569–4578 (2010).
38. Moerdyk, J. P. & Bielawski, C. W. Olefin metathesis catalysts containing
N,N′-diamidocarbenes. Organometallics 30, 2278–2284 (2011).
39. Wasserman, H. H., Clark, G. M. & Turley, P. C. Recent aspects of
cyclopropanone chemistry. Top. Curr. Chem. 47, 73–156 (1974).
1. Reissig, H-U. & Zimmer, R. Donor–acceptor-substituted cyclopropane
derivatives and their application in organic synthesis. Chem. Rev. 103,
1151–1196 (2003).
2. McGarrigle, E. M. & Gilheany, D. G. Chromium- and manganese-salen
promoted epoxidation of alkenes. Chem. Rev. 105, 1563–1602 (2005).
3. Carson, C. A. & Kerr, M. A. Heterocycles from cyclopropanes: applications in
natural product synthesis. Chem. Soc. Rev. 38, 3051–3060 (2009).
4. Wessjohann, L. A. & Brandt, W. Biosynthesis and metabolism of cyclopropane
rings in natural products. Chem. Rev. 103, 1625–1647 (2003).
5. Marco-Contelles, J., Molina, M. T. & Anjum, S. Naturally occurring cyclohexane
epoxides: sources, biological activities, and synthesis. Chem. Rev. 104,
2857–2899 (2004).
6. Rademacher, P. Photoelectron spectra of cyclopropane and cyclopropene
compounds. Chem. Rev. 103, 933–975 (2003).
7. Herges, R. Topology in chemistry: designing Mo¨bius molecules. Chem. Rev. 106,
4820–4842 (2006).
8. Lebel, H., Marcoux, J-F., Molinaro, C. & Charette, A. B. Stereoselective
cyclopropanation reactions. Chem. Rev. 103, 977–1050 (2003).
9. Pellissier, H. Recent developments in asymmetric cyclopropanation.
Tetrahedron 64, 7041–7095 (2008).
10. Moss, R. A. in Carbene Chemistry (ed. Bertrand, G.) 57–101
(Marcel Dekker, 2002).
11. Jones, M. Jr & Moss, R. A. in Reactive Intermediate Chemistry (eds Moss, R. A.,
Platz, M. S. & Jones, M. Jr) Ch. 7, 273–328 (Wiley-Interscience, 2004).
12. Cheng, Y. & Meth-Cohn, O. Heterocycles derived from heteroatom-substituted
carbenes. Chem. Rev. 104, 2507–2530 (2004).
13. Wang, J., Burdzinski, G., Kubicki, J. & Platz, M. S. Ultrafast UV-vis and IR
studies of p-biphenylyl acetyl and carbomethoxy carbenes. J. Am. Chem. Soc.
130, 11195–11209 (2008).
´
40. Olah, G. A. & Molnar, A. In Hydrocarbon Chemistry (ed. Lagowski, J. J.) Ch. 7,
371–395 (Wiley-Interscience, 2003).
41. Linstead, R. P. & Whalley, M. Conjugated macrocycles. Part XXII.
Tetrazaporphin and its metallic derivatives. J. Chem. Soc. 4839–4846 (1952).
42. Moss, R. A. & Huselton, J. K. Dimethoxycarbene: stereospecificity in the
additions of a nucleophilic carbene to b-deuteriostyrenes. J. Chem. Soc. Chem.
Commun. 950–951 (1976).
43. Mendez, F. & Garcia-Garibay, M. A. A hard–soft acid–base and DFT analysis of
singlet–triplet gaps and the addition of singlet carbenes to alkenes. J. Org. Chem.
64, 7061–7066 (1999).
44. Lecea, B. et al. Theoretical study on the mechanism of the [2þ1] thermal
cycloaddition between alkenes and stable singlet (phosphino)(silyl)carbenes.
J. Org. Chem. 72, 357–366 (2007).
45. Mukai, T., Nakazawa, T. & Isobe, K. Thermal decomposition of
troponetosylhydrazone. Tetrahedron Lett. 565–569 (1968).
14. Zhang, Y., Kubicki, J. & Platz, M. S. Ultrafast UV-visible and infrared
spectroscopic observation of a singlet vinylcarbene and the intramolecular
cyclopropenation reaction. J. Am. Chem. Soc. 131, 13602–13603 (2009).
15. Baceiredo, A., Bertrand, G. & Sicard, G. Synthesis of the first a-diazo
phosphines. Phosphorous–carbon multiple-bond character of
phosphinocarbenes. J. Am. Chem. Soc. 107, 4781–4783 (1985).
279
© 2012 Macmillan Publishers Limited. All rights reserved.