Organic Letters
Letter
(11) Takayama, H.; Katakawa, K.; Kitajima, M.; Yamaguchi, K.; Aimi,
N. Tetrahedron Lett. 2002, 43, 8307−8311.
Notes
The authors declare no competing financial interest.
(12) Oh, H.; Swenson, D. C.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F.
Tetrahedron Lett. 1998, 39, 7633−7636.
ACKNOWLEDGMENTS
(13) Absolute configuration of cyclopentanone (S)-19 was determined
by comparison of the optical rotation of the methyl ketone Wacker
■
We thank the NIH-NIGMS (R01GM080269 and postdoctoral
fellowship F32GM073332 to A.M.H.), Amgen, the Gordon and
Betty Moore Foundation, and Caltech for financial support.
R.A.C. gratefully acknowledges the support of this work provided
by a predoctoral fellowship from the National Cancer Institute of
the National Institutes of Health under Award No. F31A17435.
Additionally, we thank Eli Lilly (predoctoral fellowship to
J.T.M.) and the Fannie and John Hertz Foundation (predoctoral
fellowship to D.C.B.).
product to the known literature value; see: Thominiaux, C.; Rousse,
́
S.;
Desmaele, D.; d’Angelo, J.; Riche, C. Tetrahedron: Asymmetry 1999, 10,
̈
2015−2021. The absolute configuration of all other products generated
herein was assigned by analogy to the absolute configuration of (S)-19.
(14) Additionally, silyl enol ether derivatives of cyclopentanones were
found to be suitable enolate precursors for the formation of α-Cq
cyclopentanones under similar reaction conditions with an external allyl
(15) McDougal, N. T.; Virgil, S. C.; Stoltz, B. M. Synlett 2010, 11,
1712−1716.
REFERENCES
■
(16) Additionally, α′,α′-disubstituted cyclopentanones were suitable
substrates within the disclosed reaction manifold, albeit generally giving
the α-Cq cyclopentanone products in reduced yields and with slightly
diminished ee. β,β-disubstituted cyclopentanones were not suitable
substrates under the optimized conditions. See the Supporting
(1) (a) Liu, Y.; Han, S. J.; Liu, W. B.; Stoltz, B. M. Acc. Chem. Res. 2015,
48, 740−751. (b) Minko, Y.; Pasco, M.; Lercher, L.; Botoshansky, M.;
Marek, I. Nature 2012, 490, 522−526. (c) Das, J. P.; Marek, I. Chem.
Commun. 2011, 47, 4593−4623. (d) Weaver, J. D.; Recio, A.; Grenning,
A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846−1913. (e) Douglas, C. J.;
Overman, L. E. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5363−5367.
(f) Martin, S. F. Tetrahedron 1980, 36, 419−460.
(17) Marziale, A. N.; Duquette, D. C.; Craig, R. A., II; Kim, K. E.;
Liniger, M.; Numajiri, Y.; Stoltz, B. M. Adv. Synth. Catal. 2015, 357,
2238−2245.
(2) Behenna, D. C.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 15044−
15045.
(3) (a) Korch, K. M.; Eidamshaus, C.; Behenna, D. C.; Nam, S.; Horne,
D.; Stoltz, B. M. Angew. Chem., Int. Ed. 2015, 54, 179−183. (b) Numajiri,
Y.; Pritchett, B. P.; Chiyoda, K.; Stoltz, B. M. J. Am. Chem. Soc. 2015, 137,
1040−1043. (c) Reeves, C. M.; Behenna, D. C.; Stoltz, B. M. Org. Lett.
2014, 16, 2314−2317. (d) Behenna, D. C.; Mohr, J. T.; Sherden, N. H.;
Marunescu, S. C.; Harned, A. M.; Tani, K.; Seto, M.; Ma, S.; Novak, Z.;
Krout, M. R.; McFadden, R. M.; Roizen, J. L.; Enquist, J. A., Jr.; White, D.
E.; Levine, S. R.; Petrova, K. V.; Iwashita, A.; Virgil, S. C.; Stoltz, B. M.
Chem. - Eur. J. 2011, 17, 14199−14223.
(4) (a) Craig, R. A., II; Stoltz, B. M. Tetrahedron Lett. 2015, 56, 4670−
4673. (b) McDougal, N. T.; Streuff, J.; Mukherjee, H.; Virgil, S. C.;
Stoltz, B. M. Tetrahedron Lett. 2010, 51, 5550−5554. (c) Krout, M. R.;
Mohr, J. T.; Stoltz, B. M. Org. Synth. 2009, 86, 181−205. (d) Sprinz, J.;
Helmchen, G. Tetrahedron Lett. 1993, 34, 1769−1772. (e) Dawson, G.
J.; Frost, C. G.; Williams, J. M. J.; Coote, S. J. Tetrahedron Lett. 1993, 34,
3149−3150. (f) Von Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl.
1993, 32, 566−568.
(5) (a) Trost, B. M.; Xu, J.; Schmidt, T. J. Am. Chem. Soc. 2009, 131,
18343−18357. (b) Burger, E.; Barron, B.; Tunge, J. Synlett 2006, 17,
2824−2826. (c) Mohr, J. T.; Behenna, D. C.; Harned, A. M.; Stoltz, B.
M. Angew. Chem., Int. Ed. 2005, 44, 6924−6927. (d) Trost, B. M.; Xu, J. J.
Am. Chem. Soc. 2005, 127, 2846−2847.
(6) Reeves, C. M.; Eidamshaus, C.; Kim, J.; Stoltz, B. M. Angew. Chem.,
Int. Ed. 2013, 52, 6718−6721.
(7) (a) Trost, B. M. Tetrahedron 2015, 71, 5708−5733. (b) Nahra, F.;
́
Mace, Y.; Boreux, A.; Billard, F.; Riant, O. Chem. - Eur. J. 2014, 20,
10970−10981. (c) Rambla, M.; Duroure, L.; Chabaud, L.; Guillou, C.
Y.;
Eur. J. Org. Chem. 2014, 2014, 7716−7720. (d) Nahra, F.; Mace,
́
Lambin, D.; Riant, O. Angew. Chem., Int. Ed. 2013, 52, 3208−3212.
(e) Huang, J. Z.; Jie, X. K.; Wei, K.; Zhang, H.; Wang, M. C.; Yang, Y. R.
́
Synlett 2013, 24, 1303−1306. (f) Nahra, F.; Mace, Y.; Lambin, D.; Riant,
O. Angew. Chem., Int. Ed. 2013, 52, 3208−3212. (g) Nakamura, M.;
Hajra, A.; Endo, K.; Nakamura, E. Angew. Chem., Int. Ed. 2005, 44,
7248−7251. (h) Trost, B. M.; Pissot-Soldermann, C.; Chen, I. Chem. -
Eur. J. 2005, 11, 951−959. (i) Doyle, A. G.; Jacobsen, E. N. J. Am. Chem.
Soc. 2005, 127, 62−63. (j) Sawamura, M.; Nagata, H.; Sakamoto, H.; Ito,
Y. J. Am. Chem. Soc. 1992, 114, 2586−2592.
(8) Wellington, K. D.; Cambie, R. C.; Rutledge, P. S.; Bergquist, P. R. J.
Nat. Prod. 2000, 63, 79−85.
(9) Abbas, H. K.; Mirocha, C. J. Appl. Environ. Microbiol. 1988, 54,
1268−1274.
(10) Asai, R.; Mitsuhashi, S.; Shigetomi, K.; Miyamoto, T.; Ubukata,
M. J. Antibiot. 2011, 64, 693−696.
D
Org. Lett. XXXX, XXX, XXX−XXX