intracellular reductive environment was homeostatically restored.
After the fluorescence intensity had returned to the original level,
a second cycle of fluorescence increment and decrement was
observed upon further addition of 200 mM H2O2. This result
demonstrates that 2-Me TeR was not bleached by ROS during
the first redox cycle. Both fluorescence increments were sup-
pressed in the presence of a myeloperoxidase inhibitor, amino-
benzoic acid hydrazide (ABAH).15 Also, no fluorescence
increment was observed in the case of H2O2-stimulated HeLa
cells; this is as expected, because HeLa cells do not produce ROS
upon H2O2 stimulation.6e In contrast, APF, which is a previously
reported fluorescence probe for highly reactive oxygen species
(hROS), produced only a monotonic fluorescence increment in
the H2O2-stimulated HL-60 cell assay (see Fig. S11 in the
ESIw).6d Taken together, these results indicate that 2-Me TeR
allows the reversible detection of endogenously produced ROS in
HL-60 cells with high sensitivity and reversibility.
3 (a) B. D’Autre
´
aux and M. B. Toledano, Nat. Rev. Mol. Cell Biol.,
2007, 8, 813; (b) H. Wiseman and B. Halliwell, Biochem. J., 1996,
313, 17; (c) J. M. McCord, Science, 1974, 185, 529; (d) J. Berliner,
Vasc. Pharmacol., 2002, 38, 187; (e) I. Dalle-Donne, R. Rossi,
R. Colombo, D. Giustarini and A. Milzani, Clin. Chem., 2006,
52, 601.
4 (a) T. Finkel and N. Holbrook, Nature, 2000, 408, 239;
(b) T. Matoba, H. Shimokawa, H. Kubota, K. Morikawa,
K. Fujiki, I. Kunihiro, Y. Mukai, Y. Hirakawa and
A. Takeshita, Biochem. Biophys. Res. Commun., 2002, 290, 909.
5 (a) C. M. Grant, Mol. Microbiol., 2001, 39, 533; (b) J. F. Curtin,
M. Donovan and T. G. Gotter, J. Immunol. Methods, 2002,
265, 49.
6 (a) H. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara,
Y. Kirino, H. Nagoshi, Y. Hirata and T. Nagano, Anal. Chem.,
1998, 70, 2446; (b) S. Kenmoku, Y. Urano, H. Kojima and
T. Nagano, J. Am. Chem. Soc., 2007, 129, 7313; (c) T. Ueno,
Y. Urano, H. Kojima and T. Nagano, J. Am. Chem. Soc., 2006,
128, 10640; (d) K. Setsukinai, Y. Urano, K. Kakinuma,
H. J. Majima and T. Nagano, J. Biol. Chem., 2003, 278, 3170;
(e) Y. Koide, Y. Urano, S. Kenmoku, H. Kojima and T. Nagano,
J. Am. Chem. Soc., 2007, 129, 10324; (f) H. Maeda, Y. Fukuyasu,
S. Yoshida, M. Fukuda, K. Saeki, H. Matsuno, Y. Yamauchi,
K. Yoshida, K. Hirata and K. Miyamoto, Angew. Chem., Int. Ed.,
2004, 43, 2389; (g) E. Sasaki, H. Kojima, H. Nishimatsu,
Y. Urano, K. Kikuchi, Y. Hirata and T. Nagano, J. Am. Chem.
Soc., 2005, 127, 3684; (h) D. Oushiki, H. Kojima, T. Terai,
M. Arita, K. Hanaoka, Y. Urano and T. Nagano, J. Am. Chem.
Soc., 2010, 132, 2795; (i) M. Abo, Y. Urano, K. Hanaoka, T. Terai,
T. Komatsu and T. Nagano, J. Am. Chem. Soc., 2011, 133, 10629.
7 (a) Y. Yamada, Y. Tomiyama, A. Morita, M. Ikekita and S. Aoki,
ChemBioChem, 2008, 9, 853; (b) K. Lee, V. Dzubeck, L. Latshaw
and J. P. Schneider, J. Am. Chem. Soc., 2004, 126, 13616; (c) F. Yu,
P. Li, G. Zhao, T. Chu and K. Han, J. Am. Chem. Soc., 2011,
133, 11030; (d) K. Xu, H. Chen, J. Tian, B. Ding, Y. Xie, M. Qiang
and B. Tang, Chem. Commun., 2011, 47, 9468.
In conclusion, we have developed 2-Me TeR as a reversible
NIR fluorescence probe for ROS, based on the redox properties
of the Te atom. 2-Me TeR is oxidized by various ROS and
quickly converted to fluorescent 2-Me TeOR. In turn, 2-Me
TeOR is reduced by GSH, quickly regenerating 2-Me TeR. This
redox cycle between 2-Me TeR and 2-Me TeOR can be run
repeatedly. This system was confirmed to work in living cells.
Interestingly, the reactivity of this Te-rhodamine-based rever-
sible ROS probe toward hROS is different from that of
Se–cyanines, which exhibit selective reactivity toward ONOOꢁ.
Furthermore, the photochemical properties of 2-Me TeOR,
whose absorption and emission maxima are in the NIR region
of 650–900 nm, are favorable, because light in this region shows
high tissue penetration.16 We believe that the redox character
and reversible NIR-fluorescence response of 2-Me TeR mean
that this probe will be useful for monitoring the dynamics of
ROS production continuously in vivo.
8 (a) J. L. Dutton and P. J. Ragogna, Chem.–Eur. J., 2010, 16, 12454;
(b) L. A. Ba, M. Doring, V. Jamier and C. Jacob, Org. Biomol.
¨
Chem., 2010, 8, 4203.
9 M. Oba, Y. Okada, M. Endo, K. Tanaka, K. Nishiyama,
S. Shimada and W. Ando, Inorg. Chem., 2010, 49, 10680.
10 P. Serguievski and M. R. Detty, Organometallics, 1997, 16, 4386.
11 (a) D. J. Del Valle, D. J. Donnelly, J. J. Holt and M. R. Detty,
Organometallics, 2005, 24, 3807; (b) B. Calitree, D. J. Donnelly,
J. J. Holt, M. K. Gannon, C. L. Nygren, D. K. Sukumaran,
J. Autschbach and M. R. Detty, Organometallics, 2007, 26, 6248.
12 (a) M. J. Kasha, Chem. Phys., 1952, 20, 71; (b) S. P. McGlynn,
R. Sunseri and N. J. Christodouleas, Chem. Phys., 1962, 37, 1818;
(c) J. Nag-Chaudlhuri, L. Stoessell and S. P. McGlynn, J. Chem.
Phys., 1962, 38, 2027; (d) S. P. McGlynn, J. Daigre and F. J. Smith,
J. Chem. Phys., 1963, 39, 675; (e) S. P. McGlynn, T. Azumi and
M. Kasha, J. Chem. Phys., 1964, 40, 507.
This research was supported in part by the Ministry of
Education, Culture, Sports, Science and Technology of Japan
(Grant No. Specially Promoted Research 22000006 to T.N.), and
by a grant from the Industrial Technology Development Organi-
zation (NEDO) of Japan (to T.T.). K.H. was supported by Inoue
Foundation for Science, Konica Minolta Science and Technology
Foundation and The Asahi Glass Foundation. Y.K. and M.K.
were supported by a Grant-in-Aid for JSPS Fellows.
13 T. Egawa, Y. Koide, K. Hanaoka, T. Komatsu, T. Terai and
T. Nagano, Chem. Commun., 2011, 47, 4162.
14 S. Izumi, Y. Urano, K. Hanaoka, T. Terai and T. Nagano, J. Am.
Chem. Soc., 2009, 131, 10189.
Notes and references
15 A. J. Kettle, C. A. Gedye and C. C. Winterbourn, Biochem. J.,
1997, 321, 503.
16 (a) R. Weissleder and V. Ntziachristos, Nat. Med., 2003, 9, 123;
(b) R. Weissleder, Nat. Biotechnol., 2001, 19, 316.
1 V. Jamier, L. A. Ba and C. Jacob, Chem.–Eur. J., 2000, 16, 10920.
2 (a) S. J. Stohs and D. Bagchi, Free Radical Biol. Med., 1995,
18, 321; (b) M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin,
M. Mazur and J. Telser, Int. J. Biochem. Cell Biol., 2007, 39, 44.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3091–3093 3093