Journal of the American Chemical Society
Communication
Table 3. Synthesis of ABA Triblock Copolymers from Organotellurium MacroCTAs
a
b
MacroCTA
Ip polymerization
AB diblock copolymer
RC
ABA triblock copolymer
c
c
d
c
c
e
c
c
run
structure
Mn(GPC)
Mw/Mn
equiv
time (h)
conv (%)
Mn(GPC)
Mw/Mn
xc
Mn(GPC)
Mw/Mn
f
1
PMMA-TeMe
PMMA-TeMe
PMMA-TeMe
PSt-TeMe
4300
9100
13700
5900
1.16
1.18
1.16
1.15
300
400
400
500
10
8
10
7
7000
1.11
1.15
1.18
1.12
0.92
0.90
0.88
0.86
12800
22100
28900
17000
1.11
1.13
1.15
1.18
fg
2 ,
12300
16600
9700
fg
3 ,
8
6
4
10
8
a
b
A mixture of macroCTA (1 equiv), (TeMe)2 (1 equiv), and Ip was heated at 120 °C. The polymerization mixture was irradiated with a 500 W
c
d
high-pressure Hg lamp through a >390 nm cutoff filter at 20 °C. Determined from GPC calibrated against PMMA or PSt standards. Determined
from 1H NMR spectroscopy. Determined from GPC using a peak resolution method.7a 1,4-Dioxane was used as a solvent. The polymerization of
e
f
g
isoprene was carried out without (TeMe)2.
REFERENCES
■
(1) Fleming, I. Frontier Orbitals and Organic Chemical Reaction;
Wiley: London, 1976.
(2) (a) Yamago, S. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1−
12. (b) Yamago, S. Chem. Rev. 2009, 109, 5051−5068. (c) Yamago, S.;
Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124, 2874−2875.
(3) (a) Yamago, S.; Ray, B.; Iida, K.; Yoshida, J.; Tada, T.; Yoshizawa,
K.; Kwak, Y.; Goto, A.; Fukuda, T. J. Am. Chem. Soc. 2004, 126,
13908−13909. (b) Sugihara, Y.; Kagawa, Y.; Yamago, S.; Okubo, M.
Macromolecules 2007, 40, 9208−9211. (c) Yamago, S.; Kayahara, E.;
Kotani, M.; Ray, B.; Kwak, Y.; Goto, A.; Fukuda, T. Angew. Chem., Int.
Ed. 2007, 46, 1304−1306. (d) Yamago, S.; Ukai, U.; Matsumoto, A.;
Nakamura, Y. J. Am. Chem. Soc. 2009, 131, 2100−2101. (e) Mishima,
Figure 2. GPC profiles of block copolymerization and RC for the
E.; Yamago, S. Macromol. Rapid Commun. 2011, 32, 893−898.
preparation of PMMA-PIp-PMMA (Table 3, run 1). The polymers
were analyzed without purification.
(4) (a) Yamago, S.; Iida, K.; Yoshida, J. J. Am. Chem. Soc. 2002, 124,
13666−13667. (b) Ray, B.; Kotani, M.; Yamago, S. Macromolecules
2006, 39, 5259−5265. (c) Yusa, S.; Yamago, S.; Sugahara, M.;
the corresponding symmetrical multiblock copolymers under
the current conditions.
Morikawa, S.; Yamamoto, T.; Morishima, Y. Macromolecules 2007, 40,
5907−5915. (d) Kumar, S.; Changez, M.; Murthy, C. N.; Yamago, S.;
Lee, J.-S. Macromol. Rapid Commun. 2011, 32, 1576−1582.
(e) Mishima, E.; Yamada, T.; Watanabe, H.; Yamago, S. Chem.
Asian J. 2011, 6, 445−451.
(5) (a) Yamada, T.; Mishima, E.; Ueki, K.; Yamago, S. Chem. Lett.
2008, 650−651. (b) Yamago, S.; Kayahara, E.; Yamada, H. React.
Funct. Polym. 2009, 69, 416−423. (c) Yamago, S.; Yamada, T.; Togai,
M.; Ukai, Y.; Kayahara, E.; Pan, N. Chem.Eur. J. 2009, 15, 1018−
1029. (d) Kayahara, E.; Yamada, H.; Yamago, S. Chem.Eur. J. 2011,
17, 5272−5280.
In summary, Ip was polymerized in a controlled manner by
TERP under thermal conditions. Since conjugated dienes are
one of the challenging monomers in LRP,10,17,18 TERP
provides a new synthetic route to polydienes with controlled
structures. Furthermore, selective switching from LRP to RC
upon photoirradiation occurred with high coupling efficiency,
and this method provides structurally well controlled telechelic
PIps and symmetrical ABA-triblock copolymers. Considering
the high versatility of TERP for the synthesis of homo and
block copolymers, we believe that the current method would be
useful for providing varieties of structurally well controlled new
polymers for advanced macromolecular engineering.
(6) Goto, A.; Kwak, Y.; Fukuda, T.; Yamago, S.; Iida, K.; Nakajima,
M.; Yoshida, J. J. Am. Chem. Soc. 2003, 125, 8720−8721.
(7) (a) Yoshikawa, C.; Goto, A.; Fukuda, T. e-Polym. 2002, 13, 1−12.
(b) Yurteri, S.; Cianga, I.; Yagci, Y. Macromol. Chem. Phys. 2003, 204,
1771−1783. (c) Matyjaszewski, K.; Xia, J. Chem. Rev. 2001, 101,
2921−2990. (d) Ouchi, M.; Terashima, T.; Sawamoto, M. Chem. Rev.
2009, 109, 4963−5050.
ASSOCIATED CONTENT
■
S
* Supporting Information
(8) (a) Debuigne, A.; Jer
Ed. 2009, 48, 1422−1424. (b) Debuigne, A.; Poli, R.; Winter, J. D.;
Laurent, P.; Gerbaux, P.; Debois, P.; Wathelet, J.-P.; Jer me, C.;
́ ̂
ome, C.; Detrembleur, C. Angew. Chem., Int.
Synthesis of 1b and 1c, polymerization and RC reaction
procedures, GPC profiles, and NMR spectra of PIp and new
compounds. This material is available free of charge via the
́ ̂
o
Detrembleur, C. Chem.Eur. J. 2010, 16, 1799−1811. (c) Debuigne,
A.; Poli, R.; Winter, J. D.; Laurent, P.; Gerbaux, P.; Wathelet, J.-P.;
Jer
(d) Debuigne, A.; Poli, R.; Jer
Prog. Polym. Sci. 2009, 34, 211−239.
(9) Sato, H.; Ono, A.; Tanaka, Y. Polymer 1977, 18, 580−586.
(10) (a) Benoit, D.; Harth, E.; Fox, P.; Waymouth, R. M.; Hawker, C.
J. Macromolecules 2000, 33, 363−370. (b) Wegrzyn, J. K.; Stephan, T.;
Lau, R.; Grubbs, R. B. J. Polym. Sci., Part A: Polym. Chem. 2005, 43,
2977−2984. (c) Jitchum, V.; Perrier, S. Macromolecules 2007, 40,
1408−1412. (d) Germack, D. S.; Wooley, K. L. J. Polym. Sci., Part A:
Polym. Chem. 2007, 45, 4100−4108.
́
o
̂
me, C.; Detrembleur, C. Macromolecules 2010, 43, 2801−2813.
AUTHOR INFORMATION
́
o
̂
me, C.; Jer me, R.; Detrembleur, C.
́ ̂
o
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was partly supported by the Core Research for
Evolution Science and Technology (CREST) of the Japan
Science and Technology Agency and Toray Science and
Technology Grant.
(11) Kwak, Y.; Tezuka, M.; Goto, A.; Fukuda, T.; Yamago, S.
Macromolecules 2007, 40, 1881−1885.
(12) Since dimethyl ditelluride possesses a similar bond dissociation
energy to 1, dimethyl ditelluride would thermally generate a
5538
dx.doi.org/10.1021/ja300869x | J. Am. Chem. Soc. 2012, 134, 5536−5539