974
A. Copar et al. / Bioorg. Med. Chem. Lett. 12 (2002) 971–975
Table 2. Inhibitory activity of ethylidene trinems against Class A and
Class C b-lactamase
References and Notes
Inhibitor
IC50 mmol/L
E. cloacae 908Rb
1. Bush, K. C.; Macalintal, B. A.; Rasmussen, V.; Lee, J.;
Yang, Y. Antimicrob. Agents Chemother. 1993, 37, 851.
2. Sanders, C. C. Clin. Infect. Dis. 1992, 14, 1089.
3. Massova, I.; Mobashery, S. Acc. Chem. Res. 1997, 30, 162.
4. (a) Frere, J. M. Mol. Microbiol. 1995, 16, 385. (b) Frere,
J. M.; Dubus, A.; Galleni, M.; Matagne, A.; Amicosante, G.
Biochem. Soc. Trans. 1999, 27, 58. (c) Lakaye, B.; Dubus, A.;
Lepage, S.; Groslambert, S.; Frere, J. M. Mol. Microbiol.
1999, 31, 89.
E. coli TEM1a
Clavulanate
25
39
120
325.0
100
100
3.0
1.8
14a
14b
14c
14d
4.2
aTEM 1 concentration was 0.3 mmol. Experimental details as in foot-
note b of Table 1.
b908R concentration was 0.8 mmol.
5. (a) Perboni, A.; Tamburini, B.; Rossi, T.; Donati, D.; Tar-
zia, G.; Gaviraghi, G. In Recent Advances in the Chemistry of
Anti-infective Agents; Bentley, P. H., Ponsford, R., Eds.; The
Royal Society of Chemistry: Graham House, Cambridge,
1992; p 21. (b) Di Modugno, E.; Erbetti, I.; Ferrari, L.;
Galassi, G.; Hammond, S. M.; Xerri, L. Antimicrob. Agents
Chemother. 1994, 38, 2362. (c) Di Fabio, R.; Feriani, A.;
Gaviraghi, G.; Rossi, T. Bioorg. Med. Chem. Lett. 1995, 5,
1235. (d) Padova, A.; Roberts, S. M.; Donati, D.; Marchioro,
C.; Perboni, A. Tetrahedron 1996, 52, 263. (e) Hanessian, S.;
Rozema, M. J.; Reddy, G. B.; Braganza, J. F. Bioorg. Med.
Chem. Lett. 1995, 5, 2535. (f) Babini, G. S.; Yuan, M.; Liver-
more, D. M. Antimicrob. Agents Chemother. 1998, 42, 1168.
(g) Sendai, M.; Miwa, T. US Patent 5,459,260, 1995.
6. (a) Basker, M. J.; Osborne, N. F. J. Antibiot. 1990, 3, 470.
(b) Bennet, I.; Broom, N. J. P.; Bruton, G.; Calvert, S.; Clarke,
B. P.; Coleman, K.; Edmondson, R.; Edwards, P.; Jones, D.;
Osborne, N. F.; Walker, G. J. Antibiot. 1991, 44, 70. (c)
Coleman, K.; Griffin, D. R. J.; Page, J. W. J.; Upshon, P. A.
Antimicrob. Agents Chemother. 1989, 33, 1580. (d) Coleman,
K. Exp. Opin. Invest. Drugs 1995, 4, 693. (d) Chaeuk, I.; Maiti,
S. N.; Micetich, R. G.; Daneshtalab, M.; Atchison, K.; Phi-
lips, O. A.; Kunugita, C. J. Antibiot. 1994, 47, 1031. (e) Phi-
lips, O. A.; Czajkowski, D. P.; Spevak, P.; Singh, M. P.;
Hanehara-Kunugita, C.; Hyodo, A.; Micetich, R. G.; Maiti,
S. N. J. Antibiot. 1997, 50, 350.
respectively (Scheme 3), were showing very limited
inhibitory activity (Table 1) thus pointing to the pivotal
role of the double bond in position 10. This result is in
accord with excellent stability of trinem antibiotics
towards b-lactamase degradation.5f
In Table 2, the results of inhibition by ethylidene tri-
nems 14a–14d against representative Class C b-lacta-
mase from Enterobacter cloacae 908R are listed along
with data for a benchmark Class A enzyme (Escherichia
coli TEM1).
Compounds 14a–d were shown to competitively inhibit
this Class C b-lactamase in micromolar range. We note
that the Class C b-lactamase enzymes such as E. cloacae
908R represent a phenomenon which compromises fur-
ther therapy by the existing of antibiotic/inhibitor com-
binations. Cephalosporins were found to be extremely
good substrates for Class C b-lactamases encoded by
the AmpC gene products.3 Our design strategy of
blocking the water access to the deacylation site in the
inhibitor–lactamase enzyme complex by addition of a
hydrophobic moiety onto penem scaffold resulted in
promising lead compounds which are being further
derivatised to increase their potency.9b
7. Solmajer, T.; Copar, A. Seventh ꢀ-Lactamase Workshop,
Holy Island (UK), 5–9 April, 1998.
8. Heinze-Krauss, I.; Angehrn, P.; Charnas, R. L.; Guberna-
tor, K.; Gutknecht, E. M.; Hubschwerlen, C.; Kania, M.;
Oefner, C.; Page, M. G. P.; Sogabe, S.; Specklin, J. L.; Wink-
ler, F. J. Med. Chem. 1998, 41, 3961.
9. (a) Copar, A.; Solmajer, T.; Anzie, B.; Kuzman, T.; Mesar,
T.; Kocjan, D. WO/98/27094: The Patent Cooperation Treaty
(PCT), 1998, Geneva, Switzerland, p 1. (b) Vilar, M.; Galeni,
M.; Solmajer, T.; Turk, B.; Frere, J.-M.; Matagne, A. Anti-
microb. Agents Chemother. 2001, 45, 2215.
10. Taniguchi, Y.; Inanaga, J.; Yamaguchi, M. Bull. Chem.
Soc. Jpn. 1981, 54, 3229.
11. Taguchi, K.; Westheimer, F. H. J. Org. Chem. 1971, 36,
1570.
12. Choi, W.-B.; Churchill, H. R. O.; Lynch, J. E.; Thomp-
son, A. S.; Humprey, G. R.; Volante, R. P.; Reider, P. J.;
Shinkai, I. Tetrahedron Lett. 1994, 35, 2275.
13. (a) Ernst, I.; Gosteli, J.; Woodward, R. B. J. Am. Chem.
Soc. 1979, 101, 6301. (b) Perrone, E.; Alpegiani, M.; Bedeschi,
A.; Guidici, F.; Franceschi, G. Tetrahedron Lett. 1984, 25,
2399. (c) Yoshida, A.; Tajima, Y.; Takeda, N.; Oida, S. Tet-
rahedron Lett. 1984, 25, 2793.
Conclusions
Sodium(8S,9R,10E)-1-aza-10-ethylidene-11-oxo-tricyclo-
(7.2.0.03,8)undec-2-en-2-carboxylate (14a) and sodium
(8S,9R,10E)-1-aza-10-ethylidene-11-oxo-6-thia-tricyclo-
(7.2.0.03,8)undec-2-en-2-carboxylate (14c) have been
shown to have activity at the enzyme b-lactamase I from
B. cereus and another Class A b-lactamase (E. coli
TEM1) comparable to the two reference compounds.
The potential shown by compounds 14a–d to inhibit
Class C b-lactamase E. cloacae 908R as well could be
useful in efforts to retain the b-lactam antibiotics activ-
ity in spite of the presence of Class C b-lactamases in
bacteria.
14. Hanessian, S.; Desilets, D.; Bennani, Y. L. J. Org. Chem.
1990, 55, 1235.
15. Jeffrey, P. D.; McCombie, S. W. J. Org. Chem. 1982, 47,
587.
Acknowledgements
16. All the compounds have been characterised by routine
analytical techniques:
Compound 14a: mp 222–225 ꢁC dec. (DMF/ether). 1H
NMR 300 MHz (d, ppm, DMSO-d6): 1.10–2.05 (m, 7H), 1.77
The authors would like to thank Professor J.-M. Frere
(Liege) and members of his group for continuing sup-
port and encouragement.