Walther et al.
FIGURE 5. 13C NMR difference spectrum of 13 and 13 + CO2 in pyridine-d5. (The small triplet at 149 and the two dispersion signals 135 and
123 ppm are residual resonances of the pyridine-d5.)
elemental analyses are in agreement with the assumed structures
(cf. Scheme 2 and the experimental part).
ized. Nevertheless, a DFT calculation at the B3LYP/6-31+G-
(d,p) level25 of the complex 8a (cf. Figure 4) shows a persuasive
agreement with structural data of other zinc-phenoxide crys-
tals.26,27 Without consideration of the very weak interaction to
imidazole ring N atom, in this model, the four zinc ligands are
arranged in a slightly distorted tetrahedral configuration. As-
suming that a correlation exists between the Zn-O bond lengths
and the degree of nucleophility,28 for such Zn(II) complexes a
certain reactivity can be expected toward heterocumulenes such
as CO2. This is confirmed by our NMR experiments: Inspection
and interpretation of our 13C NMR spectra of the compounds
7a and 8b in DMSO-d6 and 13 in pyridine-d5 which are based
on previous investigations26,29 doubtless show the presence of
An additional type of carboximidamide/zinc complexes
(structures 8-11) which does not belong to the anionic 1,3,5-
triazapentadienyl chelate species was synthesized by reaction
of diethyl zinc and the carboximidamides 4g-k. These com-
pounds do not possess acidic NH functionalities, and just the
phenolic OH groups at the C9 positions are still present.
Therefore, cationic zinc carboximidamide complexes 8-11 are
generated which finally are stabilized by the coordination of
different anions which stem from external acidic compounds
(alcohols, phenols, or carbonic acids) as a consequence of
subsequent addition reactions. The elemental composition of
these complexes was confirmed via mass spectra investigations
and elemental analyses. The compounds 8a- c, 10a, and 10b
feature m/z values from 90 to 100% which is an indicator for
the remarkably high complex stability. Because of improved
solubility in DMSO-d6, in some cases (8a, 9b, 11a, b) it was
possible to achieve analyzable 1H and 13C NMR signals which
are in good agreement with the designed structures 8-11 (cf.
example Figure 8; Supporting Information).
(26) Kunert, M.; Bra¨uer, M.; Klobes, O.; Go¨rls, H.; Dinjus, E.; Anders,
E. Eur. J. Inorg. Chem. 2000, 1803-1809.
(27) Darensbourg, D. J.; Holtcamp, M. W.; Struck, G. E.; Zimmer, M.
S.; Niezgoda, S. A.; Rainey, P.; Robertson, J. B.; Draper, J. D.; Reibenspies,
J. H. J. Am. Chem. Soc. 1999, 121, 107-116.
(28) This correlation was first described for [LnZn-OH]+ complexes:
Bra¨uer, M.; Perez-Lustres, J. L.; Weston, J.; Anders, E. Inorg. Chem. 2002,
41, 1454-1463. Its applicability to [LnZn-OR]+ complexes (R ) aryl,
alky) appears to be justified but has to be quantified by further theoretical
investigation.
Unfortunately, because of the lack of suitable crystals, these
Zn(II) derivatives could not crystallographically be character-
(29) Ruben, M.; Walther, D.; Knake, R.; Go¨rls, H.; Beckert, R. Eur.
Inorg. Chem. 2000, 1055-1060.
(30) Arakawa, H.; Aresta, M.; Armor, J. M.; Barteau, M. A.; Beckman,
E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dinjus, E.; Dixon, D. A.; Domen,
K.; DuBois, D. E.; Eckert, J.; Fujita, E.; Gibson, D. H.; Goddard, W. E.;
Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, H. H.; Lyons, J. E.; Manzer,
L. E.; Marks, T. J.; Morokuma, K.; Nicholas, K. M.; Periana, R.; Que, L.;
Rostrup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorjai,
G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem. ReV. 2001, 101, 953-
996.
(31) (a) Inoue, S.; Koinuma, H.; Tsuruta, T. J. Polym. Sci., Part B:
Polym. Lett. 1969, 7, 287-292. (b) Soga, K.; Uenishi, K.; Hosoda, S. W.
J. Polym. Sci., Part B: Polym. Lett. 1985, 23, 299-304. (c) Kuran, W.;
Listos, T. Macromol. Chem. 1994, 19, 977-984.
(32) Darensbourg, D. J.; Rainey, P.; Yarbrough, J. Inorg. Chem. 2001,
40, 986-993.
(33) (a) Coates, G. W. J. Chem. Soc., Dalton Trans. 2002, 467-475.
(b) Cheng, M.; Darling, N. A.; Lobkovsky, E. B.; Coates, G. W. Chem.
Commun. 2000, 2007-2008.
(25) (a) DFT-calculations were performed using the GAUSSIAN 98 suite
of programs, revision A.11: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.;
Scuseria, G. E.; Robb, M. A. J.; Cheeseman, R.; Zakrzewski, V. G.;
Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam,
J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.;
Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.;
Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.;
Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman,
J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle,
E. S.; Pople, J. A. GAUSSIAN 98, revision A.11; Gaussian Inc.: Pittsburgh,
PA, 1998. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (c) Lee,
C.; Yang, W.; Parr, R. G. Phys. ReV. B. 1988, 37, 785-789.
1404 J. Org. Chem., Vol. 71, No. 4, 2006