Scheme 1. FriedelꢀCrafts Reaction of Indole with Enones
steric repulsions).7 Chen7b and Melchiorre7c demonstrated
that chiral primary amine salts derived from cinchona
alkloids are good catalysts for asymmetric FꢀC alkylation
of indoles with enones, although this reaction usually
requires a high catalyst concentration (20ꢀ30 mol %).
The existing literature contains only a few articles con-
cerning asymmetric organocatalytic FꢀC reactions with
R,β-unsaturated ketones catalyzed by chiral amines7 or
Brønsted acids8 and no information about asymmetric
FꢀC reactions with β,β-disubstituted enones, leading to
products with quaternary stereogenic centers.9
In our opinion, the reactivity problem of enones in
selected organocatalytic reactions can be overcome by
applying a high-pressure technique.10,11 We have recently
demonstrated the first example of significant pressure
influence on an organocatalytic reaction proceeding via
an iminium activation mode.12 We found that a combina-
tion of pressure and bifunctional catalysis with primary
amines remarkably accelerate enantioselective conjugate
addition of nitroalkanes to sterically congested β,β-disub-
stituted enones, allowing for the construction of quatern-
ary stereogenic centers with very high enantioselectivity.
Here, we demonstrate the significant influence of pres-
sure on FꢀC reactions of indoles with enones (Scheme 1)
catalyzed by salts of chiral primary amines.13 This is the
first example of pressure influence studies on an organo-
catalytic FꢀC reaction proceeding via an iminium activa-
tion mode.14 This technique also allows to synthesize
selected indole derivatives containing quaternary stereo-
genic centers from β,β-disubstituted enones.9
Figure 1. Organocatalysts examined in FꢀC alkylation.
alkaloids. Chen applied 30 mol % of 9-amino-9-deoxy-epi-
cinchonine (1f, Figure 1) with 2 equiv of TfOH and after
3 days isolated product 3a with 72% yield and 65% ee.
Melchiorre7c discovered a more efficient catalytic system
based on a primary amine derived from dihydroquinine
(20 mol %) and D-N-Boc-phenylglycine (40 mol %) as a
cocatalyst. After 1 day at 70 °C the product 3a was isolated
with 90% yield and 88% ee.
Our preliminary investigations of the model reaction
under 1 bar and 10 kbar at 50 °C with 5 mol % of simple
chiral primary amines 1aꢀf (Figure 1) and benzoic acid as
a cocatalyst indicate the strong effect of hydrostatic pres-
sure on the reaction rate (Table 1). In all cases the yield at
atmospheric pressure was very low (e6%), but under
10 kbar benzylidenoacetone conversion exceeds 70%. The
best results in terms of yield and enantioselectivity were
observed with 9-amino-9-deoxy-epi-cinchonine (1f) with
2 equiv of BzOH (entry 6, 95% yield and 83% ee at 10 kbar).
In contrast, the reaction under atmospheric pressure at
50 °C affords product 3a with only a 6% yield and
comparable enantioselectivity (82% ee).
For further investigations we selected amine 1f and
studied more attentively the influence of pressure (in the
1 barꢀ10 kbar range) on the reaction course. The results of
these investigations with 2 or 5 mol % of catalyst 1f 2BzOH
3
As a model reaction for our studies, we chose the
alkylation of indole with E-benzylidenoacetone (Table 1).
This particular reaction was investigated by Chen7b and
Melchiorre7c with primary amines derived from cinchona
(11) For examples of enantioselective organocatalytic reactions un-
der high pressure, see: (a) Matsumoto, K.; Uchida, T. Chem. Lett. 1981,
1673. (b) Sera, A.; Takagi, K.; Katayama, H.; Yamada, H.; Mataumoto,
K. J. Org. Chem. 1988, 53, 1157. (c) Misumi, Y.; Bulman, R. A.;
Matsumoto, K. Heterocycles 2002, 56, 599. (d) Sekiguchi, Y.; Sasaoka,
A.; Shimomoto, A.; Fujioka, S.; Kotsuki, H. Synlett 2003, 1655.
(e) Hayashi, Y.; Tsuboi, W.; Shoji, M.; Suzuki, N. J. Am. Chem. Soc.
2003, 125, 11208. (f) Hayashi, Y.; Tsuboi, W.; Shoji, M.; Suzuki, N.
Tetrahedron Lett. 2004, 45, 4353.(g) Mimoto, A.; Nakano, K.; Ichikawa,
Y.; Kotsuki, H. Heterocycles 2010, 80, 799. (h) Mori, K.; Yamauchi, T.;
Maddaluno, J.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. Synlett 2011, 2080.
(i) For recent review, see: Toma, S.; Sebesta, R.; Meciarova, M. Curr. Org.
Chem. 2011, 15, 2257.
(7) (a) Van Li, D.-P.; Guo, Y.-C.; Ding, Y.; Xiao, W.-J. Chem.
Commun. 2006, 799. (b) Chen, W.; Du, W.; Yue, L.; Li, R.; Wu, Y.;
Ding, L.-S.; Chen, Y.-C. Org. Biomol. Chem. 2007, 5, 816. (c) Bartoli, G.;
Bosco, M.; Carlone, A.; Pesciaioli, F.; Sambri, L.; Melchiorre, P. Org.
Lett. 2007, 9, 1403. (d) Hong, L.; Sun, L.; Liu, C.; Wang, L.; Wong, K.;
Wang, R. Chem.;Eur. J. 2009, 15, 11105.
(8) (a) Rueping, M.; Nachtsheim, B. J.; Moreth, S. A.; Bolte, M.
Angew. Chem., Int. Ed. 2008, 47, 593. (b) Tang, H.-Y.; Lu, A.-D.; Zhou,
Z.-H.; Zhao, G.-F.; He, L.-N.; Tang, C.-C. Eur. J. Org. Chem. 2008,
1406. (c) Sakamoto, T.; Itoh, J.; Mori, K.; Akiyama, A. Org. Biomol.
Chem. 2010, 8, 5448. (d) For review, see: You, S.-L.; Cai, Q.; Zeng, M.
Chem. Soc. Rev. 2009, 38, 2190.
(9) (a) Christoffers, J., Baro, A., Eds. Quaternary Stereocenters:
Challenges and Solutions for Organic Synthesis; Wiley-VCH: Weinheim,
2005. (b) Bella, M.; Gasperi, T. Synthesis 2009, 1583.
(10) (a) Van Eldik, R., Klarner, F. G.; Eds. High Pressure Chemistry:
Synthetic Mechanistic and Supercritical Applications; Wiley-VCH:
Weinheim, 2002. (b) Matsumoto, K., Acheson, R. M., Eds. Organic Synth-
esis at High Pressure; Wiley: New York, 1991. (c) Jurczak, J., Baranowski,
B., Eds. High Pressure Chemical Synthesis; Elsevier: Amsterdam, 1989.
(12) Kwiatkowski, P.; Dudzinski, K.; Lyzwa, D. Org. Lett. 2011, 13,
3624.
(13) For a review on organocatalysis with primary amines, see:
(a) Jiang, L.; Chen, Y.-C. Catal. Sci. Technol. 2011, 1, 354. (b) Xu, L.-W.;
Luo, J.; Lu, Y. Chem. Commun. 2009, 1807. (c) Peng, F.; Shao, Z. J. Mol.
Catal. A: Chem. 2008, 285, 1. (d) Chen, Y.-C. Synlett 2008, 1919.
(14) For other selected examples of FꢀC type reactions under high-
pressure conditions, see: (a) Kotsuki, H.; Hayashida, K.; Shimanouchi,
T.; Nishizawa, H. J. Org. Chem. 1996, 61, 984. (b) Kotsuki, H.;
Teraguchi, T.; Shimomoto, N.; Ochi, M. Tetrahedron Lett. 1996, 37,
3727. (c) Harrington, P.; Kerr, M. A. Tetrahedron Lett. 1997, 38, 5949.
(d) Harrington, P.; Kerr, M. A. Can. J. Chem. 1998, 76, 1256.
(e) Kwiatkowski, P.; Wojaczynska, E.; Jurczak, J. Tetrahedron: Asymmetry
2003, 14, 3643. (f) Emmett, M. R.; Kerr, M. A. Org. Lett. 2011, 13, 4180.
Org. Lett., Vol. 14, No. 6, 2012
1541