16 C. M. L. Vande Velde, H. J. Geise and F. Blockhuys, Cryst. Growth
Des., 2006, 6, 241–246.
17 W. H. Ojala, T. M. Arola, N. Herrera, B. Balidemaj and C. R. Ojala,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2007, 63, o207–
o211.
18 W. H. Ojala, J. M. Smieja, J. M. Spude, T. M. Arola, M. K. Kuspa,
N. Herrera and C. R. Ojala, Acta Crystallogr., Sect. B: Struct. Sci.,
2007, 63, 485–496.
19 B. T. Loughrey, M. L. Williams and P. C. Healy, Acta Crystallogr.,
Sect. E: Struct. Rep. Online, 2009, 65, o2087.
that when the nitrogen atoms are not available to participate
directly in intermolecular interactions (i.e., when they are
positioned in the spacers between the phenyl rings), they
indirectly generate new contacts by activating synthons
involving nearby hydrogen atoms and phenyl rings. The
supramolecular structures are dominated by CH/N and
CH/F hydrogen bonds, as a result of which additional
weaker F/F and F/p contacts can be observed. The latter
are, however, indispensable for the formation of the three-
dimensional structure.
20 G. Rothenberg, A. P. Downie, C. L. Raston and J. L. Scott, J. Am.
Chem. Soc., 2001, 123, 8701–8708.
21 M. T. Ahmet, J. Silver and A. Houlton, Acta Crystallogr., Sect. C:
Cryst. Struct. Commun., 1994, 50, 1814–1818.
22 J. L. Wardell, S. M. S. V. Wardell, J. M. S. Skakle, J. N. Low and
C. Glidewell, Acta Crystallogr., Sect. C: Cryst. Struct. Commun.,
2002, 58, o428–o430.
23 G. F. D’Alelio, J. V. Crivello, R. K. Schoenig and T. F. Huemmer, J.
Macromol. Sci., Part A: Pure Appl. Chem., 1967, 1, 1251–1258.
24 F. H. Allen, Acta Crystallogr., Sect. B: Struct. Sci., 2002, 58, 380–388.
25 G. W. Coates, A. R. Dunn, L. M. Henling, J. W. Ziller, E. B. Lobkovsky
and R. H. Grubbs, J. Am. Chem. Soc., 1998, 120, 3641–3649.
26 K. Reichenbacher, H. I. Suss and J. Hulliger, Chem. Soc. Rev., 2005,
34, 22–30.
27 C. Y. Dai, P. Nguyen, T. B. Marder, A. J. Scott, W. Clegg and
C. Viney, Chem. Commun., 1999, 2493–2494.
28 W. J. Feast, P. W. Lovenich, H. Puschmann and C. Taliani, Chem.
Commun., 2001, 505–506.
29 C. E. Smith, P. S. Smith, R. L. Thomas, E. G. Robins, J. C. Collings,
C. Y. Dai, A. J. Scott, S. Borwick, A. S. Batsanov, S. W. Watt,
S. J. Clark, C. Viney, J. A. K. Howard, W. Clegg and
T. B. Marder, J. Mater. Chem., 2004, 14, 413–420.
Acknowledgements
A.C. and R.D.B. wish to thank the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT) for
their predoctoral grants. The authors are grateful to Dr A. Yu.
Makarov (Institute of Organic Chemistry, Russian Academy of
Sciences, Novosibirsk) for recording the NMR data. Financial
support by FWO-Vlaanderen under grant G.0129.05 and by the
University of Antwerp under Grant GOA-2404 is gratefully
acknowledged. The authors gratefully acknowledge the Univer-
sity of Antwerp for access to the university’s computer cluster
CalcUA.
References
1 Y. D. Jin, H. Z. Chen, P. L. Heremans, K. Aleksandrzak, H. J. Geise,
G. Borghs and M. Van der Auweraer, Synth. Met., 2002, 127, 155–
158.
2 Y. D. Jin, J. P. Yang, P. L. Heremans, M. Van der Auweraer,
E. Rousseau, H. J. Geise and G. Borghs, Chem. Phys. Lett., 2000,
320, 387–392.
30 S. Z. Zhu, S. F. Zhu, G. F. Jin and Z. T. Li, Tetrahedron Lett., 2005,
46, 2713–2716.
31 D. Chopra, T. S. Cameron, J. D. Ferrara and T. N. G. Row, J. Phys.
Chem. A, 2006, 110, 10465–10477.
32 A. R. Choudhury and T. N. G. Row, Cryst. Growth Des., 2004, 4, 47–52.
33 J. Bernstein, Y. M. Engel and A. T. Hagler, J. Chem. Phys., 1981, 75,
2346–2353.
34 CCDC 781119.
35 V. R. Vangala, A. Nangia and V. M. Lynch, Chem. Commun., 2002,
1304–1305.
36 Enraf-Nonius, CAD-4 EXPRESS, Enraf-Nonius, Delft, The
Netherlands, 1994.
37 K. Harms and S. Wocadlo, XCAD4, University of Marburg,
Germany, 1996.
38 G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008,
64, 112–122.
3 F. T. Luo, Y. T. Tao, S. L. Ko, H. C. Chang and H. Chen, J. Mater.
Chem., 2002, 12, 47–52.
4 W. Tachelet, S. Jacobs, H. Ndayikengurukiye, H. J. Geise and
J. Gruner, Appl. Phys. Lett., 1994, 64, 2364–2366.
5 J. P. Yang, P. L. Heremans, R. Hoefnagels, W. Tachelet, P. Dieltiens,
F. Blockhuys, H. J. Geise and G. Borghs, Synth. Met., 2000, 108, 95–
100.
6 J. P. Yang, Y. D. Jin, P. L. Heremans, R. Hoefnagels, P. Dieltiens,
F. Blockhuys, H. J. Geise, M. Van der Auweraer and G. Borghs,
Chem. Phys. Lett., 2000, 325, 251–256.
7 E. Vanneste, M. De Wit, K. Eyckmans and H. J. Geise, Semin. Food
Anal., 1998, 3, 107–113.
8 J. N. Wilson and U. H. F. Bunz, J. Am. Chem. Soc., 2005, 127, 4124–
4125.
39 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7–13.
40 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields,
R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr., 2006,
39, 453–457.
9 D. S. Chemla, Nonlinear Optical Properties of Organic Molecules and
Crystals, Academic Press, Boston, 1987.
41 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. J. Montgomery, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Orti,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
A. L. G. Liu, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gil, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian Inc.,
Pittsburg, PA, 2003.
10 R. M. Metzger, B. Chen, U. Hopfner, M. V. Lakshmikantham,
D. Vuillaume, T. Kawai, X. L. Wu, H. Tachibana, T. V. Hughes,
H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer
and G. J. Ashwell, J. Am. Chem. Soc., 1997, 119, 10455–10466.
11 A CSD search (v. 5.31, updated in May 2010) for all substituted
1,4-distyrylbenzenes resulted in 151 hits.
12 M. L. Renak, G. P. Bartholomew, S. J. Wang, P. J. Ricatto,
R. J. Lachicotte and G. C. Bazan, J. Am. Chem. Soc., 1999, 121,
7787–7799.
13 C. M. L. Vande Velde, J. K. Baeke, H. J. Geise and F. Blockhuys,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2005, 61,
o284–o287.
14 C. M. L. Vande Velde, L. J. Chen, J. K. Baeke, M. Moens,
P. Dieltiens, H. J. Geise, M. Zeller, A. D. Hunter and
F. Blockhuys, Cryst. Growth Des., 2004, 4, 823–830.
15 C. M. L. Vande Velde, H. J. Geise and F. Blockhuys, Acta
Crystallogr., Sect. C: Cryst. Struct. Commun., 2004, 61, o21–o24.
710 | CrystEngComm, 2011, 13, 702–710
This journal is ª The Royal Society of Chemistry 2011