Macromolecules
Article
heated with stirring at 110 °C for 12 h under argon
atmosphere. Then the reactant was cooled to room temper-
ature and then poured into water and extracted by diethyl ether
for several times. After removal of the solvent, the crude
product was purified by silica gel chromatography with hexane/
dichloromethane (v/v, 5/1) mixture as eluent. The pure
compound (2) was obtained as red solid (yield 60%). 1H NMR
(δ/ppm, CDCl3, 400 MHz): 8.15 (s, 2H), 7.90 (d, 2H), 7.49
(d, 2H), 7.41 (s, 2H), 7.28 (t, 4H), 7.20 (t, 2H), 6.95 (d, 2H),
3.8 (d, 4H), 1.71 (m, 2H), 1.34 (m, 16H), 0.94 (t, 12H).
2,3-Bis(3-(2-ethylhexyloxy)phenyl)-5,8-bis(5-bromothiophen-2-
yl)quinoxaline (3). To a solution of compound 2 (1.16 g, 1.65 mmol)
in 10 mL N,N-dimethylformamide (DMF), a solution of N-
bromosuccinimide (NBS) (0.60 g, 3.37 mmol) in 10 mL of DMF
was added at 0 °C. The reactant was stirred for 30 min and then
poured into water and extracted with diethyl ether (50 mL × 3). The
organic phase was dried over anhydrous MgSO4. After removal the
solvent under reduced pressure, the residues were purified by silica gel
column chromatography using hexanes as eluent. The pure product
compound 3 was obtained as deep red solid in a yield of 94% (1.33 g).
1H NMR (δ/ppm, CDCl3, 400 MHz): 8.25 (s, 2H) 7.73 (d, 2H), 7.46
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors would like to acknowledge the financial support
from National High Technology Research and Development
Program 863, Chinese Academy of Sciences, NSFC (Nos.
2011AA050523, 20874106, 20821120293, 51173189, and
20933010).
REFERENCES
■
(1) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science
1995, 270, 1789−1791.
(2) Hoth, C. N.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J. Adv.
Mater. 2007, 19, 3973−3974.
(3) Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans,
J. Appl. Phys. Lett. 2008, 92 (3), 033306.
(4) Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater.
2001, 11, 15−26.
(s, 2H), 7.31 (t, 2H), 7.20 (t, 4H), 7.05 (d, 2H), 3.92 (d, 4H), 1.75
(m, 2H), 1.36 (m, 16H), 0.96 (t, 12H).
(5) Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008,
47, 58−77.
Synthesis of the Polymers Using Stille Coupling Reaction. Both
PBDTDTQx-T and PBDTDTQx-O were prepared by coupling
compound 3 with the corresponding bis(trimethylstannyl)-substituted
BDT monomer by the same procedure. BDT-T (0.452 g, 0.5 mmol)
or BDT-O (0.386 g, 0.5 mmol) and compound 3 (0.430 g, 0.5 mmol)
were put into a 50 mL two-neck flask, and 10 mL of degassed toluene
was added under the protection of argon. The solution was purge with
argon for 10 min, and then 10 mg of Pd(PPh3)4 was added. After being
purged with argon for 20 min, the reaction mixture was heated with
stirring at 105 °C for 16 h. Then the reactant was cooled to room
temperature, and the polymer was precipitated by adding methanol
and then filtered through a Soxhlet thimble, which was then subjected
to Soxhlet extraction with methanol, hexane, and chloroform
successively. The polymer was recovered from the chloroform fraction
by rotary evaporation as solid. The solid was dried under vacuum for 1
day. The yields of the two polymers were both about 40%.
(6) Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.;
Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photo 2009, 3, 297−
U5.
(7) Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868−
5923.
(8) Giacalone, F.; Martin, N. Chem. Rev. 2006, 106, 5136−5190.
(9) Roncali, J. Chem. Rev. 1992, 92, 711−738.
(10) Li, C.; Liu, M. Y.; Pschirer, N. G.; Baumgarten, M.; Mullen, K.
Chem. Rev. 2010, 110, 6817−6855.
(11) He, Y. J.; Li, Y. F. Phys. Chem. Chem. Phys. 2011, 13, 1970−
1983.
(12) Amb, C. M.; Chen, S.; Graham, K. R.; Subbiah, J.; Small, C. E.;
So, F.; Reynolds, J. R. J. Am. Chem. Soc. 2011, 133, 10062−10065.
(13) Price, S. C.; Stuart, A. C.; Yang, L. Q.; Zhou, H. X.; You, W. J.
Am. Chem. Soc. 2011, 133, 4625−4631.
Device Fabrication and Measurements. Polymer solar cell devices
were fabricated under conditions as follows: After spin-coating a 35
nm layer of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS) onto a precleaned indium−tin oxide (ITO) coated
glass substrates, the polymer/PC71BM blend solution was spin-coated.
The concentration of the polymer/PC71BM blend solution for spin-
coating was 10 mg/mL (polymer/o-dichlorobenzene). The thickness
of the active layer was controlled by changing the spin speed during
the spin-coating process and measured on profilometer (Ambios Tech.
XP-2). The devices were completed by evaporating Ca/Al metal
electrodes with an area of 4 mm2 as defined by masks. The I−V curves
are measured under the illumination of 100 mW· cm−2 AM 1.5G using
a XES-70S1 (SAN-EI Electric Co., Ltd.) solar simulator (AAA grade,
70 mm ×70 mm photobeam size). The 2 × 2 cm monocrystalline
silicon reference cell (SRC-1000-TC-QZ) was purchased from VLSI
Standards Inc.
(14) He, Z. C.; Zhong, C. M.; Huang, X.; Wong, W. Y.; Wu, H. B.;
Chen, L. W.; Su, S. J.; Cao, Y. Adv. Mater. 2011, 23, 4636−4637.
(15) Liang, Y. Y.; Xu, Z.; Xia, J. B.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.;
Yu, L. P. Adv. Mater. 2010, 22, E135−136.
(16) Su, M. S.; Kuo, C. Y.; Yuan, M. C.; Jeng, U. S.; Su, C. J.; Wei, K.
H. Adv. Mater. 2011, 23, 3315−3316.
(17) Blouin, N.; Michaud, A.; Gendron, D.; Wakim, S.; Blair, E.;
Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao, Y.; Leclerc, M. J.
Am. Chem. Soc. 2008, 130, 732−742.
(18) Beaujuge, P. M.; Pisula, W.; Tsao, H. N.; Ellinger, S.; Mullen, K.;
Reynolds, J. R. J. Am. Chem. Soc. 2009, 131, 7514−7515.
(19) Huang, F.; Chen, K. S.; Yip, H. L.; Hau, S. K.; Acton, O.; Zhang,
Y.; Luo, J. D.; Jen, A. K. Y. J. Am. Chem. Soc. 2009, 131, 13886−13887.
(20) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger,
A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497−500.
(21) Muhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z. G.; Waller,
D.; Gaudiana, R.; Brabec, C. Adv. Mater. 2006, 18, 2884−2889.
(22) Yang, Y.; Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Li, G. J. Am.
Chem. Soc. 2008, 130, 16144−16145.
(23) Huo, L. J.; Hou, J. H. Polym. Chem. 2011, 2, 2453−2461.
(24) Zhou, E. J.; Cong, J. Z.; Yamakawa, S.; Wei, Q. S.; Nakamura,
M.; Tajima, K.; Yang, C. H.; Hashimoto, K. Macromolecules 2010, 43,
2873−2879.
(25) Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Chen, R. I.; Yang, Y.; Wu,
Y.; Li, G. J. Am. Chem. Soc. 2009, 131, 15586−15587.
(26) Liang, Y. Y.; Wu, Y.; Feng, D. Q.; Tsai, S. T.; Son, H. J.; Li, G.;
Yu, L. P. J. Am. Chem. Soc. 2009, 131, 56−57.
(27) Hou, J. H.; Chen, H. Y.; Zhang, S. Q.; Liang, Y. Y.; Yang, G. W.;
Yang, Y.; Yu, L. P.; Wu, Y.; Li, G. Nat. Photo 2009, 3, 649−653.
(28) Shi, C. J.; Yao, Y.; Yang, Y.; Pei, Q. B. J. Am. Chem. Soc. 2006,
128, 8980−8986.
ASSOCIATED CONTENT
■
S
* Supporting Information
Optimizing of PBDTDTQx-base devices, differential scanning
calorimetrythermograms, density functional theory calculations,
and XRD patterns. This material is available free of charge via
AUTHOR INFORMATION
■
Corresponding Author
3037
dx.doi.org/10.1021/ma300060z | Macromolecules 2012, 45, 3032−3038