UPDATES
An Improved Synthesis of ImidazoACTHNUTRGENNU[G 4,5-b]pyridines and ImidazoACHTUTGNREN[NUGN 4,5-b]pyrazines
(128 mg, 0.6 mmol) and the chloropyridine 1a (100 mg,
0.4 mmol). The reaction vessel was evacuated and refilled
with argon gas. 1,4-Dioxane and t-AmOH (10:1, 2 mL) were
then added via syringe followed by formamide (24 mL,
0.6 mmol) and the reaction mixture was degassed by three
vacuum/argon(g) purge cycles. The reaction vessel was then
equipped with a cold-finger condenser and immersed in
a pre-heated (1108C) oil-bath and the content stirred for
6 h. Upon consumption of the pyridine (as judged by TLC
analysis) the reaction mixture was allowed to cool to room
temperature, diluted with methanol (10 mL), and passed
through a Celiteꢁ plug, rinsing with additional methanol.
The crude mixture was concentrated under vacuum and ap-
plied to a silica gel column, eluting with 3% MeOH in
CH2Cl2 to afford product 2a as an off-white solid; yield:
89 mg (93%).
Lester-Zeiner, J. Able, C. Biorn, J. Ma, J. Shi, J. Trea-
nor, J. R. Allen, ACS Med. Chem. Lett. 2014, 5, 700–
705.
[12] A. J. Rosenberg, J. Zhao, D. A. Clark, Org. Lett. 2012,
14, 1764–1767.
[13] R. J. Wilson, A. J. Rosenberg, L. Kaminsky, D. A.
Clark, J. Org. Chem. 2014, 79, 2203–2212.
[14] H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem.
2001, 113, 2056–2075; Angew. Chem. Int. Ed. 2001, 40,
2004–2021.
[15] W. D. Jones, Science 2002, 295, 289–290.
[16] A. J. Rosenberg, D. A. Clark, Org. Lett. 2012, 14, 4678–
4681.
[17] S. Ueda, S. Ali, B. P. Fors, S. L. Buchwald, J. Org.
Chem. 2012, 77, 2543–2547.
[18] N. Hoshiya, S. L. Buchwald, Adv. Synth. Catal. 2012,
354, 2031–2037.
[19] B. H. Yang, S. L. Buchwald, Org. Lett. 1999, 1, 35–38.
[20] J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaugh-
nessy, L. M. Alcazar-Roman, J. Org. Chem. 1999, 64,
5575–5580.
[21] J. Yin, S. L. Buchwald, Org. Lett. 2000, 2, 1101–1104.
[22] J. Yin, S. L. Buchwald, J. Am. Chem. Soc. 2002, 124,
6043–6048.
[23] K.-i. Fujita, M. Yamashita, F. Puschmann, M. M. Alvar-
ez-Falcon, C. D. Incarvito, J. F. Hartwig, J. Am. Chem.
Soc. 2006, 128, 9044–9045.
Acknowledgements
We thank Syracuse University for generous financial support
of this research. We thank the Chisholm and Totah research
groups for sharing of chemicals, use of instrumentation, and
helpful discussions.
[24] J. Yin, M. M. Zhao, M. A. Huffman, J. M. McNamara,
References
Org. Lett. 2002, 4, 3481–3484.
[25] T. Ikawa, T. E. Barder, M. R. Biscoe, S. L. Buchwald, J.
Am. Chem. Soc. 2007, 129, 13001–13007.
[1] Y. M. Yutilov, R. K. Alan, in: Advances in Heterocyclic
Chemistry, Vol. 89, Academic Press, 2005, pp 159–270.
[2] K. Bukhryakov, A. Kurkin, M. Yurovskaya, Chem. Het-
erocycl. Compd. 2011, 47, 533–557.
[3] E. Nicolai, J. Goyard, T. Benchetrit, J. M. Teulon, F.
Caussade, A. Virone, C. Delchambre, A. Cloarec, J.
Med. Chem. 1993, 36, 1175–1187.
[4] C. H. Senanayake, L. E. Fredenburgh, R. A. Reamer, J.
Liu, R. D. Larsen, T. R. Verhoeven, P. J. Reider, Tetra-
hedron Lett. 1994, 35, 5775–5778.
[5] P. K. Chakravarty, E. M. Naylor, A. Chen, R. S. L.
Chang, T.-B. Chen, K. A. Faust, V. J. Lotti, S. D. Kiv-
lighn, R. A. Gable, J. Med. Chem. 1994, 37, 4068–4072.
[6] A. Cappelli, G. L. Pericot Mohr, G. Giuliani, S. Galeaz-
zi, M. Anzini, L. Mennuni, F. Ferrari, F. Makovec,
E. M. Kleinrath, T. Langer, M. Valoti, G. Giorgi, S.
Vomero, J. Med. Chem. 2006, 49, 6451–6464.
[7] P. M. Lukasik, S. Elabar, F. Lam, H. Shao, X. Liu, A. Y.
Abbas, S. Wang, Eur. J. Med. Chem. 2012, 57, 311–322.
[8] V. Bavetsias, S. Crumpler, C. Sun, S. Avery, B. Atrash,
A. Faisal, A. S. Moore, M. Kosmopoulou, N. Brown,
P. W. Sheldrake, K. Bush, A. Henley, G. Box, M. Valen-
ti, A. de Haven Brandon, F. I. Raynaud, P. Workman,
S. A. Eccles, R. Bayliss, S. Linardopoulos, J. Blagg, J.
Med. Chem. 2012, 55, 8721–8734.
[26] B. P. Fors, D. A. Watson, M. R. Biscoe, S. L. Buchwald,
J. Am. Chem. Soc. 2008, 130, 13552–13554.
[27] D. S. Surry, S. L. Buchwald, Angew. Chem. 2008, 120,
6438–6461; Angew. Chem. Int. Ed. 2008, 47, 6338–6361.
[28] B. P. Fors, K. Dooleweerdt, Q. Zeng, S. L. Buchwald,
Tetrahedron 2009, 65, 6576–6583.
[29] D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27–50.
[30] X. Huang, K. W. Anderson, D. Zim, L. Jiang, A. Kla-
pars, S. L. Buchwald, J. Am. Chem. Soc. 2003, 125,
6653–6655.
[31] U. Schonn, J. Messinger, M. Buckendahl, M. S. Prabhu,
A. Konda, Tetrahedron Lett. 2007, 48, 2519–2525.
[32] We found tert-amyl alcohol to be more practical than
tert-butyl alcohol; for similar observations, see B.
Bhayana, D. P. Fors, S. L. Buchwald, Org. Lett. 2009,
11, 3954–3957.
[33] R. A. Singer, S. Caron, R. E. McDermott, P. Arpin,
N. M. Do, Synthesis 2003, 1727–1731.
[34] G. J. Withbroe, R. A. Singer, J. E. Sieser, Org. Process
Res. Dev. 2008, 12, 480–489.
[35] H. Cong, G. C. Fu, J. Am. Chem. Soc. 2014, 136, 3788–
3791.
[36] D. T. Ziegler, J. Choi, J. M. MuÇoz-Molina, A. C. Bis-
sember, J. C. Peters, G. C. Fu, J. Am. Chem. Soc. 2013,
135, 13107–13112.
[9] A. Mishra, S. Sahu, N. Dash, S. K. Behera, G. Krishna-
moorthy, J. Phys. Chem. B 2013, 117, 9469–9477.
[37] S. Y. Lee, J. M. Murphy, A. Ukai, G. C. Fu, J. Am.
Chem. Soc. 2012, 134, 15149–15153.
[38] P. W. N. M. van Leeuwen, P. C. J. Kamer, J. N. H. Reek,
P. Dierkes, Chem. Rev. 2000, 100, 2741–2770.
[39] J. Wang, J. Gu, M. T. Nguyen, G. Springsteen, J. Leszc-
zynski, J. Phys. Chem. B 2013, 117, 2314–2320.
[10] B. J. Newhouse, S. Wenglowsky, J. Grina, E. R. Laird,
W. C. Voegtli, L. Ren, K. Ahrendt, A. Buckmelter,
S. L. Gloor, N. Klopfenstein, J. Rudolph, Z. Wen, X. Li,
B. Feng, Bioorg. Med. Chem. Lett. 2013, 23, 5986–5989.
[11] E. Hu, K. Andrews, S. Chmait, X. Zhao, C. Davis, S.
Miller, G. Hill Della Puppa, M. Dovlatyan, H. Chen, D.
Adv. Synth. Catal. 2014, 356, 3465 – 3470
ꢀ 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3469