D.F. Back et al. / Polyhedron 36 (2012) 21–29
29
[12] R.E. Berry, E.M. Armstrong, R.L. Beddoes, D. Collison, S.N. Ertok, M. Helliwell,
C.D. Garner, Angew. Chem., Int. Ed. 38 (1999) 795.
4. Conclusions
[13] K.B. Garbutcheon-Singh, M.P. Grant, B.W. Harper, A.M. Krause-Heuer, M.
Manohar, N. Orkey, J.R. Aldrich-Wright, Curr. Top. Med. Chem. 11 (2011) 521.
[14] G.G. Nunes, A.C. Bonatto, C.G. Albuquerque, A. Barison, R.R. Ribeiro, D.F. Back,
A.V.C. Andrade, E.L. Sá, F.O. Pedrosa, J.F. Soares, E.M. Souza, J. Inorg. Biochem.
[15] R. Liasko, T.A. Kabanos, S. Karkabounas, M. Malamas, A.J. Tasiopoulos, D.
Stefanou, P. Collery, A. Evangelou, Anticancer Res. 18 (1998) 3609.
[16] A. Evangelou, S. Karkabounas, G. Kalpouzos, M. Malamas, R. Liasko, D.
Stefanou, A.T. Vlahos, T.A. Kabanos, Cancer Lett. 119 (1997) 221.
[17] A. Papaioannou, M. Manos, S. Karkabounas, R. Liasko, V. Kalfakakou, I. Correia,
A. Evangelou, J. Costa Pessoa, T.A. Kabanos, J. Inorg. Biochem. 98 (2004) 959.
[18] M.P. Waller, K.R. Geethalakshmi, M. Buhl, J. Phys. Chem. B 112 (2008) 5813.
[19] S.A. Taghavi, M. Moghadam, I. Mohammadpoor-Baltork, S. Tangestaninejad, V.
Mirkhani, A.R. Khosropour, V. Ahmadi, Polyhedron 30 (2011) 2244.
[20] J.P. Gaffney, A.M. Valentine, Biochemistry 48 (2009) 11609.
[21] D. Sadhukhan, A. Ray, G. Rosair, L. Charbonnière, S. Mitra, Bull. Chem. Soc. Jpn.
84 (2) (2011) 211.
We have described the synthesis and the structural characteriza-
tion, together with DFT studies, of the three new oxidovanadium(V)
complexes of the cation [VO]3+, [VO(L1-3H+)]2ꢀdmso (1), [VO(L2-
3H+)]2 (2) and [VO(L3-3H+)]2ꢀdmso (3), where L are different Schiff
bases ligands (see Section 2). The reactions reported in this work
corroborate also earlier literature statistics [55,56], that dibasic tri-
dentate ligands prefer dimeric vanadium complexes. The oxidation
of the starting reagent [VO]2+ from IV to V, assuming the chelated
form [VO]3+, can be explained also with basis in results obtained
by Rao [9], according to which the final presence of VO2 or VO3+
+
dinuclear complexes depends upon the reaction conditions: vana-
dium exists in acidic solutions as VO2+, and in highly alkaline med-
ium as tetrahedral VO43ꢁ [57]. It has been reported the formation of
VO3+ and VO2+ using the same ligand, under different experimental
conditions, but without any X-ray structure [58]. Reactions per-
formed [9] in neutral medium between VO(acac)2 and H3Ly
(L = Schiff base ligand holding alkoxo group(s); Ly = L2, L7, L8) gave
as products [VOLy]2, also, dimers of the core VO3+. The synthesis of
a large variety of alkoxo-bound oxidovanadium(V) complexes using
Schiff bases as ligands resulted in VO3+ and VO2+ complexes, and the
studies on their interconversions have shown that the addition of
[22] A.T. Chaviara, P.J. Cox, R.M. Papi, K.T. Papazisis, D. Zambouli, A.H. Kortsaris, D.A.
Kyriakidis, C.A. Bolos, J. Inorg. Biochem. 98 (8) (2004) 1271.
[23] X. Qiao, Z.Y. Ma, C.Z. Xie, F. Xue, Y.W. Zhang, J.Y. Xu, Z.Y. Qiang, J.S. Lou, G.J.
Chen, S.P. Yan, J. Inorg. Biochem. 105 (5) (2011) 728.
[24] I. Yilmaz, H. Temel, H. Alp, Polyhedron 27 (2008) 125.
[25] E. Hadjoudisa, A. Rontoyiannib, K. Ambroziakc, T. Dziembowskac, I.M.
Mavridis, J. Photochem. Photobiol. A: Chem. 162 (2004) 521.
[26] K. Uzarevic, M. Rubcic, V. Stilinovic, B. Kaitner, M. Cindric, J. Mol. Struct. 984
(2010) 232.
[27] G. Türkoglu, H. Berber, H. Dal, C. Ögretir, Spectrochim. Acta, Part A 79 (2011)
1573.
[28] P. Fita, E. Luzina, T. Dziembowska, D. Kopec, P. Piatkowski, Cz. Radzewicz, A.
Grabowska, Chem. Phys. Lett. 416 (2005) 305.
[29] D.M. Boghaei, M. Gharagozlou, Spectrochim. Acta, Part A 67 (2007) 944.
[30] J. Vanco, J. Marek, Z. Trávnícek, E. Racanská, O. Sajlenová, J. Muselík, J. Inorg.
Biochem. 102 (2008) 595.
[31] R. Fernando Martínez, Ma. Ávalos, R. Babiano, P. Cintas, J.L. Jiménez, M.E. Light,
J.C. Palacios, Eur. J. Org. Chem. (2011) 3137.
[32] S.S. Harsha, D. Grischkowsky, J. Phys. Chem. A 114 (2010) 3489.
[33] G.M. Sheldrick, SHELXS-97: Program for Crystal Structure Solution, University of
Göttingen, Germany, 1997.
[34] G.M. Sheldrick, SHELXL-97: Program for Crystal Structure Refinement, University
of Göttingen, Germany, 1997.
[35] K. Brandenburg, DIAMOND 3.1a. 1997–2005, Version 1.1a. Crystal Impact GbR,
Bonn, Germany.
small amounts of acid converts VO2 to VO3+, but the reverse does
+
not happen in the presence of base [9].
The results of DFT calculations show that the distribution of the
electron density in the title complexes is very similar, also if com-
pared with other molecules already synthesized by us. Such equal-
itarian distribution of electron density may reveal, among other
consequences, a tendency for inhibition of the biological activity
of certain enzymes, such as acetylcholine. This performance, how-
ever, deserves further systematic studies, before one can make any
statements about it.
[36] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro,
M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakke, C. Adamo, J.
Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman,
J.V. Orti, J. Cioslowski, D.J. Fox, GAUSSIAN 09, Revision A.02, Gaussian, Inc.,
Wallingford, CT, 2009.
[37] A.D. Becke, J. Chem. Phys. 98 (1993) 1372.
[38] G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, J.
Mantzaris, J. Chem. Phys. 89 (1988) 2193.
[39] Roy Dennington, Todd Keith, John Millam, GaussView, Version 5, Semichem
Inc., Shawnee Mission KS, 2009.
[40] D.F. Back, G. Manzoni de Oliveira, M. Hörner, F. Broch, Polyhedron 31 (2012) 558.
[41] L. Checinska, S.J. Grabowski, M. Malecka, J. Phys. Org. Chem. 16 (2003) 213.
[42] L.S. Glass, B. Nguyen, K.D. Goodwin, C. Dardonville, W.D. Wilson, E.C. Long,
M.M. Georgiadis, Biochemistry 48 (2009) 5943.
Acknowledgements
Brazilian Research Councils CNPq and FAPERGS-Fundação de
Amparo à Pesquisa do Estado do Rio Grande do Sul Edital No.
003/2009 and Edital No. 002/2011.
Appendix A. Supplementary data
CCDC 856023, 856024, 856025 contain the supplementary
crystallographic data for this paper. These data can be obtained
ing.html, or from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-
033; or e-mail: deposit@ccdc.cam.ac.uk.
References
[43] P. Sharma, M. Chawla, S. Sharma, A. Mitra, RNA 16 (2010) 942.
[44] G.R. Desiraju, T. Steiner, Structural Chemistry and Biology: The Weak
Hydrogen Bond (International Union of Crystallography – Monographs on
Crystallography), Oxford University Press, 2001.
[1] J. Chakravarty, S. Dutta, S.K. Chandra, P. Basu, A. Chakravorty, Inorg. Chem. 32
(1993) 4249.
[45] S.J. Grabowski, J. Phys. Org. Chem. 17 (2004) 18.
[46] J.C. Mareque Rivas, L. Brammer, Inorg. Chem. 37 (1998) 4756.
[2] S. Mondal, S. Dutta, A. Chakravorty, J. Chem. Soc., Dalton Trans. (1995) 1115.
[3] J. Chakravarty, S. Dutta, A. Dey, A. Chakravorty, J. Chem. Soc., Dalton Trans.
(1994) 557.
[4] T.A. Kabanos, A.D. Keramidas, A. Papaioannou, A. Terzis, Inorg. Chem. 33 (1994)
845.
[5] A.D. Keramidas, A.B. Papaioannou, A. Vlahos, T.A. Kabanos, G. Bonas, A.
Makriyannis, C.P. Rapropoulou, A. Terziz, Inorg. Chem. 35 (1996) 357.
[6] V.A. Nikolakis, P. Stathopoulos, V. Exarchou, J.K. Gallos, M. Kubicki, T.A.
Kabanos, Inorg. Chem. 49 (2010) 52.
[7] T. Lovell, R.A. Torres, W.-G. Han, T. Liu, D.A. Case, L. Noodleman, Inorg. Chem.
41 (2002) 5744.
ˇ
´
[47] D. Drahonovsky, J.-M. Lehn, J. Org. Chem. 74 (2009) 8428.
[48] C. Villiers, P. Thuéry, M. Ephritikhine, Polyhedron 29 (2010) 1593.
[49] K. Funabiki, Y. Itoh, Y. Kubota, M. Matsui, J. Org. Chem. 76 (2011) 3545.
[50] T.J. Przystas, T.H. Fife, J. Am. Chem. Soc. 103 (1981) 4884.
[51] R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105 (1983) 7512.
[52] P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793.
[53] W.T. Yang, R.G. Parr, Proc. Natl. Acad. Sci. USA 82 (1985) 6723.
[54] P.K. Nayak, N. Periasamy, Org. Electron. 10 (2009) 1396.
[55] A. Syamal, K.S. Kale, Inorg. Chem. 18 (1979) 992.
[56] C.J. Carrano, C.M. Nunn, R. Quan, J.A. Bonadies, V.L. Pecoraro, Inorg. Chem. 29
(1990) 944.
[57] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, fourth ed., Wiley-
Interscience Publications, 1980.
[8] R.R. Eady, Chem. Rev. 96 (1996) 3013.
[9] G. Asgedom, A. Sreedhara, J. Kivikoski, J. Valkonen, E. Kolehmainen, C.P. Rao,
Inorg. Chem. 35 (1996) 5674.
[10] E. Bayer, H.Z. Kneifel, Z. Naturforsch. B 27 (1972) 207.
[11] S.W. Taylor, B. Kammerer, E. Bayer, Chem. Rev. 97 (1997) 333.
[58] J.A. Bonadies, C.J. Carrano, J. Am. Chem. Soc. 108 (1986) 4088.