ORGANIC
LETTERS
2012
Vol. 14, No. 7
1664–1667
Postsynthetic Modification of Peptides via
Chemoselective N-Alkylation of Their Side
Chains
Luca Monfregola,† Marilisa Leone,‡ Enrica Calce,‡ and Stefania De Luca*,‡
Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309,
United States, and Institute of Biostructures and Bioimages, National Research Council,
80138 Naples, Italy
Received January 18, 2012
ABSTRACT
A chemoselective, mild, and versatile method for performing postsynthetic modifications of peptide sequences is described. It requires only
activated molecular sieves in the presence of an alkyl halide in order to N-alkylate lysine side chains. This reaction is fully compatible with most of
the peptide functionalities, discriminates the reactivity of differently protected lysines, and proceeds in good yield. The mild conditions employed
were further proved by performing the N-alkylation of a peptide containing a disulfide bridge.
The development of new methodologies for the selective
and straightforward chemical modification of peptides is
eagerly requested and represents a scientific challenge, due
toits important implications indrug discovery, aswell asin
structureÀactivity relationship (SAR) studies in peptide
chemistry.1
Instead of a stepwise synthetic approach where unnat-
ural amino acids are incorporated by a traditional protocol
into a peptide chain, direct and selective peptide modifica-
tion represents a flexible and versatile alternative approach
to optimize lead structures.
during the coupling of modified amino acids with the
peptide chain on the resin.2 However, the key to the success
of the postsynthetic peptide modification approach lies in
the chemoselective outcome of the employed reaction.
In recent years, many synthetic protocols have been
published to introduce modifications on already pre-
formed peptide sequences.3
A possible synthetic route to modify peptide side chains
is the N-alkylation reaction. In this regard, the most cited
Kessler protocol4 reported a synthetic route to N-alkylate
The main goal of this synthetic strategy is avoiding
sterical hindrance problems, which are often encountered
(3) (a) Ooi, T.; Tayama, E.; Maruoka, K. Angew. Chem., Int. Ed.
~
2003, 42, 579–582. (b) Espuna, G.; Arsequell, G.; Valencia, G.; Barluenga,
ꢀ
J.; Alvarez-Gutierrez, J. M.; Ballesteros, A.; Gonzales, J. M. Angew.
Chem., Int. Ed. 2004, 43, 325–329. (c) Ruiz-Rodriguez, J.; Albericio, F.;
Lavilla, R. Chem.;Eur. J. 2010, 16, 1124–1127. (d) Tedaldi, L. M.; Smith,
M. E. B.; Nathani, R. I.; Baker, J. R. Chem. Commun. 2009, 43, 6583–6585.
(e) Huang, R.; Holbert, M. A.; Tarrant, M. K.; Curtet, S.; Colquhoun,
D. R.; Dancy, B. M.; Dancy, B. C.; Hwang, Y.; Tang, Y.; Meeth, K.;
Marmorstein, R.; Cole, R. N.; Khochbin, S.; Cole, P. A. J. Am. Chem. Soc.
2010, 132, 9986–9987. (f) Carrasco, M. R.; Silva, O.; Rawls, K. A.;
Sweeney, M. S.; Lombardo, A. A. Org. Lett. 2006, 8, 3529–3532. (g)
Chan, A. O.-Y.; Ho, C.-M.; Chong, H.-C.; Leung, Y.-C.; Huang, J.-S.;
Wong, M.-K.; Che, C.-M. J. Am. Chem. Soc. 2012, 134, 2589–2598.
(4) Demmer, O.; Dijkgraaf, I.; Schottelius, M.; Wester, H.-J.; Kessler,
H. Org. Lett. 2008, 10, 2015–2018.
† University of Colorado.
‡ National Research Council.
(1) Jungheim, L. N.; Shepperd, T. A.; Baxter, A. J.; Burguess, J.;
Hatch, S. D.; Lubbehusen, P.; Wiskerchen, M.; Muesing, M. A. J. Med.
Chem. 1996, 39, 96–108.
(2) (a) Dal Pozzo, A.; Bergonzi, R.; Minghong, N. Tetrahedron Lett.
2001, 42, 3925–3927. (b) Dal Pozzo, A.; Minghong, N.; Muzi, L.;
Caporale, A.; De Castiglione, R.; Kaptein, B.; Broxterman, Q. B.;
Formaggio, F. J. Org. Chem. 2002, 67, 6372–6375. (c) Minghong, N.;
Esposito, E.; Kaptein, B.; Broxterman, Q. B.; Dal Pozzo, A. Tetrahedron
Lett. 2005, 46, 6369–6371.
r
10.1021/ol300437w
Published on Web 03/12/2012
2012 American Chemical Society