Journal of the American Chemical Society
Communication
compound 12a in ∼70% yield from the acid 10a. Apart from
the asymmetric hydrovinylation, the major challenge in this
synthesis turned out to be the direct stereoselective hydro-
genation of 12a to a trikentrin derivative. Repeated attempts
under a variety of homogeneous and heterogeneous hydro-
genation conditions15 led to a mixture of cis- and trans-
trikentrin derivatives (both useful for syntheses of the
corresponding natural products, albeit in a less selective
fashion). A satisfactory solution to the problem involved the
use of our recently published9 Pd(II)-catalyzed isomerization of
the terminal 12a into an internal alkene 13a, followed by
Crabtree hydrogenation,16 which gave exclusively the N-Ts
derivative 14a as a single diastereomer. Removal of the N-Ts
derivative using TBAF in refluxing THF17 gave the natural
product (+)-cis-trikentrin (4a), identical in all respects with the
reported natural product.4a,14b
and chromatographic data for characterization of all com-
pounds. This material is available free of charge via the Internet
AUTHOR INFORMATION
Corresponding Author
■
Present Address
†Korea Research Institute of Chemical Technology, 141
Gajeongro, Daejeon 305-600, Korea
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Financial assistance for this research by NIH (General Medical
Sciences, R01 GM075107) and NSF (CHE-1057818) is
gratefully acknowledged.
Synthesis of a more complex natural product, (+)-cis-
trikentrin B, shown in Scheme 4, illustrates the use of the
Scheme 4. Enantioselective Synthesis of cis-Trikentrin B
REFERENCES
■
(1) (a) Chyan, Y. J.; Poeggeler, B.; Omar, R. A.; Chain, D. G.;
Frangione, B.; Ghiso, J.; Pappolla, M. A. J. Biol. Chem. 1999, 274,
21937. (b) Bendheim, P. E.; Poeggeler, B.; Neria, E.; Ziv, V.; Pappolla,
M. A.; Chain, D. G. J. Mol. Neurosci. 2002, 19, 213. (c) Hwang, I. K.;
Yoo, K.-Y.; Li, H.; Park, O. K.; Lee, C. H.; Choi, J. H.; Jeong, Y.-G.;
Lee, Y. L.; Kim, Y.-M.; Kwon, Y.-G.; Won, M.-H. J. Neurosci. Res. 2009,
87, 2126.
(2) (a) Rao, K. V. Antibiot. Chemother. 1960, 10, 312. (b) Marsh, W.
S.; Garretson, A. L.; Wesel, E. M. Antibiot. Chemother. 1960, 10, 316.
(c) For a synthesis, see: Sutou, N.; Kato, K.; Akita, H. Tetrahedron:
Asymmetry 2008, 19, 1833.
(3) (a) Capon, R. J.; Rooney, F.; Murray, L. M.; Collins, E.; Sim, A.
T. R.; Rostas, J. A. P.; Butler, M. S.; Carroll, A. R. J. Nat. Prod. 1998,
61, 660. (b) Wright, A. E.; Pomponi, S. A.; Cross, S. S.; McCarthy, P. J.
Org. Chem. 1992, 57, 4772. For recent synthetic studies of related
molecules, see: (c) Feldman, K. S.; Ngernmeesri, P. Org. Lett. 2011,
13, 5704. (d) Garg, N. K.; Sarpong, R.; Stoltz, B. M. J. Am. Chem. Soc.
2002, 124, 13179.
(4) (a) Capon, R. J.; Macleod, J. K.; Scammells, P. J. Tetrahedron
1986, 42, 6545. (b) Herb, R.; Carroll, A. R.; Yoshida, W. Y.; Scheuer,
P. J.; Paul, V. J. Tetrahedron 1990, 46, 3089. For examples of other
related indole natural products, see the following. (c) Raputindoles:
Vougogiannopoulou, K.; Fokialakis, N.; Aligiannis, N.; Cantrell, C.;
Skaltsounis, A. L. Org. Lett. 2010, 12, 1908. (d) Anti-malarial
flinderoles: Fernandez, L. S.; Buchanan, M. S.; Carroll, A. R.; Feng, Y.
J.; Quinn, R. J.; Avery, V. M. Org. Lett. 2009, 11, 329.
hydrovinylation product, 7b (entry 7, Table 1), from 7-VI and a
late-stage functionalization of a 6,8-dimethylcyclopent[g]indole
nucleus (15). Using the chemistry described earlier, 7b was
converted into 14b in nearly the same yields and selectivities.
Not unexpectedly, the direct electrophilic reactions at the C5-
peri position of 14b were not feasible in the presence of the
more reactive indole C3 position, even with the deactivating N-
Ts moiety. We resorted to hydrogenation of the C2−C3 bond
before iodination of the substrate using I2 and PhI(OCOCF3)2.
A highly regioselective reaction ensued, giving 16 as the
exclusive product. Subsequent dehydrogenation using Mn-
(OAc)3, followed by Stille reaction to install the (E)-1-butenyl
side chain, gave a good yield of N-Ts (+)-cis-trikentrin-B.
Deprotection of the N-Ts group using TBAF gave the natural
product.4a,14b
Finally it should be noted that the chemistry outlined here is
compatible with the substitution patterns in other known
trikentrins and herbindoles,7 and it should be possible to
prepare any of the cis-congeners with complete stereoselectivity
using a similar route with only slight modifications. Preparation
of the compounds in the trans-series can be envisioned using
alternate chemistry of the key ketone 11a or 11b.18 Such
studies and application of this chemistry to prepare other
complex indole alkaloids are in progress.
(5) For recent reviews of functionalization of the indole nucleus, see:
(a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215. (b) Bandini,
M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608. (c) Poulsen,
T. B.; Jorgensen, K. A. Chem. Rev. 2008, 108, 2903.
̈
(6) Lee, S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2007, 129, 15438.
(7) For recent reviews, see: (a) Silva, L. F. Jr.; Craveiro, M. V.;
Tebeka, I. R. M. Tetrahedron 2010, 66, 3875. (b) Sapeta, K.; Lebold,
T. P.; Kerr, M. A. Synlett 2011, 1495.
(8) Recent reviews: (a) RajanBabu, T. V. Synlett 2009, 853.
(b) RajanBabu, T. V. Chem. Rev. 2003, 103, 2845. (c) Jolly, P. W.;
Wilke, G. Hydrovinylation. In Applied Homogeneous Catalysis with
Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.; VCH:
New York, 1996; Vol. 2, pp 1024−1048. For applications in synthesis,
see: (d) Lim, H. J.; RajanBabu, T. V. Org. Lett. 2011, 13, 6596.
(e) Mans, D. J.; Cox, G. A.; RajanBabu, T. V. J. Am. Chem. Soc. 2011,
133, 5776. (f) Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74,
4896. (g) Saha, B.; Smith, C. R.; RajanBabu, T. V. J. Am. Chem. Soc.
2008, 130, 9000. For a detailed procedure of a typical asymmetric
hydrovinylation, see: (h) Smith, C. R.; Zhang, A.; Mans, D. J.;
RajanBabu, T. V. Org. Synth 2008, 85, 248. For Co(II)-catalyzed
asymmetric hydrovinylations, see: (i) Sharma, R. K.; RajanBabu, T. V.
ASSOCIATED CONTENT
■
S
* Supporting Information
Full experimental details for the preparation of the
intermediates and hydrovinylation reactions; spectroscopic
5498
dx.doi.org/10.1021/ja3004733 | J. Am. Chem. Soc. 2012, 134, 5496−5499