Journal of the American Chemical Society
Article
Notes
wall calix[4]pyrrole receptors α,α-3. The receptor series α,α-3
exhibits a variety of electronically different aromatic walls.
While bound to the calix[4]pyrroles, the anions are wedged in
the cleft formed by the two aromatic walls and sandwiched
between them. The anions are, therefore, forced to interact,
either repulsively or attractively, with the corresponding π
systems. Halide binding becomes progressively more attractive
as the number and electron withdrawing character of the
aromatic substituents increases (more positive ESP value at the
center of the six member ring). This may be considered as
evidence for the presence of anion-π interactions and the
electrostatic nature of those interactions. Comparison of
binding energies for the “two-wall “system α,α-3 with binding
energies for the “no-wall” reference calix[4]pyrrole 2 allows a
rough quantification of the strengths of the various halide-π
interactions. Chloride and bromide experience interactions with
π systems that are very similar in strength and reach attractive
magnitudes of up to −0.7 kcal mol−1. Iodide experiences
slightly more attractive interactions with π systems, up to −1.0
kcal mol−1, a phenomenon that we ascribe to the increased size
and polarizablility of iodide in relation to the other halides.
The binding processes were analyzed more thoroughly via
their enthalpic and entropic terms. Unexpectedly, in acetonitrile
solution, the increase in free energy of binding (ΔG) of halides
with receptors having aromatic rings with the more positive
ESP values, correlates with a more positive entropic
contribution (TΔS) to binding. In addition, the free energies
values and their enthalpic contributions (ΔH) show a subtle
inverted trend. We ascribed this unexpected behavior to strong
solvation effects taking place during the binding process.
Indeed, upon changing to a less polar solvent, chloroform, the
binding data displayed the expected relationship of free energy
and enthalpy of binding in nonpolar organic solvents, by which
an increase in free energy is reflected by an increase in binding
enthalpy. However, even in chloroform solution the model
system under study does not obey the common enthalpy−
entropy compensation paradigm. We suggest that the loss of
entropy leading to complex formation is compensated by a
significant gain in entropy accompanying the almost complete
desolvation of the ion-pair. This desolvation is required for the
formation of receptor-separated ion-paired Cl−⊂α,α-3·TOA
complexes. Finally, our results indicate that anion−π
interactions in polar and nonpolar organic solvents can be
weakly attractive −0.7 to −1 kcal mol−1 and that they are
mainly driven by enthalpy.64
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank Gobierno de Espana MINECO (projects CTQ2011-
̃
23014, CTQ2011-27512/BQU and CONSOLIDER INGEN-
IO CSD2010-00065, FEDER funds), Generalitat de Catalunya
DURSI (2009SGR00686), and ICIQ Foundation for funding.
D.Q. thanks the MICINN of Spain for a “Ramon
contract.
́
y Cajal”
REFERENCES
(1) Chowdhury, S.; Kebarle, P. J. Chem. Phys. 1986, 85, 4989.
(2) Hiraoka, K.; Mizuse, S.; Yamabe, S. J. Phys. Chem. 1987, 91, 5294.
(3) Quinonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.;
Costa, A.; Deya, P. M. Angew. Chem., Int. Ed. 2002, 41, 3389.
(4) Quinonero, D.; Garau, C.; Frontera, A.; Ballester, P.; Costa, A.;
Deya, P. M. Chem. Phys. Lett. 2002, 359, 486.
■
(5) Alkorta, I.; Rozas, I.; Elguero, J. J. Am. Chem. Soc. 2002, 124,
8593.
(6) Mascal, M.; Armstrong, A.; Bartberger, M. D. J. Am. Chem. Soc.
2002, 124, 6274.
(7) Ma, J. C.; Dougherty, D. A. Chem. Rev. (Washington, DC, U.S.)
1997, 97, 1303.
(8) Giese, M.; Albrecht, M.; Bannwarth, C.; Raabe, G.; Valkonen, A.;
Rissanen, K. Chem. Commun. 2011, 47, 8542.
(9) Berryman, O. B.; Bryantsev, V. S.; Stay, D. P.; Johnson, D. W.;
Hay, B. P. J. Am. Chem. Soc. 2007, 129, 48.
(10) Ahuja, R.; Samuelson, A. G. CrystEngComm 2003, 5, 395.
(11) Mooibroek, T. J.; Black, C. A.; Gamez, P.; Reedijk, J. Cryst.
Growth Des. 2008, 8, 1082.
(12) Robertazzi, A.; Krull, F.; Knapp, E. W.; Gamez, P.
CrystEngComm 2011, 13, 3293.
(13) Chen, Y.; Wang, D. X.; Huang, Z. T.; Wang, M. X. Chem.
Commun. 2011, 47, 8112.
(14) Berryman, O. B.; Johnson, D. W. Chem. Commun. 2009, 3143.
(15) Dawson, R. E.; Hennig, A.; Weimann, D. P.; Emery, D.;
Ravikumar, V.; Montenegro, J.; Takeuchi, T.; Gabutti, S.; Mayor, M.;
Mareda, J.; Schalley, C. A.; Matile, S. Nature Chem. 2010, 2, 533.
(16) Chudzinski, M. G.; McClary, C. A.; Taylor, M. S. J. Am. Chem.
Soc. 2011, 133, 10559.
(17) Wang, D.-X.; Wang, M.-X. J. Am. Chem. Soc. 2013, 135, 892.
(18) Garau, C.; Frontera, A.; Quinonero, D.; Ballester, P.; Costa, A.;
Deya, P. M. Chem. Phys. Lett. 2004, 392, 85.
(19) Garau, C.; Frontera, A.; Quinonero, D.; Ballester, P.; Costa, A.;
Deya, P. M. J. Phys. Chem. A 2004, 108, 9423.
(20) Rosokha, Y. S.; Lindeman, S. V.; Rosokha, S. V.; Kochi, J. K.
Angew. Chem., Int. Ed. 2004, 43, 4650.
(21) Berryman, O. B.; Sather, A. C.; Hay, B. P.; Meisner, J. S.;
Johnson, D. W. J. Am. Chem. Soc. 2008, 130, 10895.
(22) Schneider, H.; Vogelhuber, K. M.; Schinle, F.; Weber, J. M. J.
Am. Chem. Soc. 2007, 129, 13022.
(23) Wang, D. X.; Zheng, Q. Y.; Wang, Q. Q.; Wang, M. X. Angew.
Chem., Int. Ed. 2008, 47, 7485.
(24) Chifotides, H. T.; Schottel, B. L.; Dunbar, K. R. Angew. Chem.,
Int. Ed. 2010, 49, 7202.
(25) Sokkalingam, P.; Kim, D. S.; Hwang, H.; Sessler, J. L.; Lee, C. H.
Chem. Sci. 2012, 3, 1819.
(26) Sokkalingam, P.; Kee, S. Y.; Kim, Y.; Kim, S. J.; Lee, P. H.; Lee,
C. H. Org. Lett. 2012, 14, 6234.
(27) Yoo, J.; Park, I. W.; Kim, T. Y.; Lee, C. H. Bull. Korean Chem.
ASSOCIATED CONTENT
■
S
* Supporting Information
General experimental methods for the synthesis and binding
studies, fits of the titration data, additional experimental results
discussed in the text and their associated figures, spectral data
for new compounds, and X-ray crystallographic files of 5c, 5d,
5h, α,α-3a, α,α-3b, α,α-3c, α,α-3g, α,α-3h, α,β-3c, α,β-3g, and
α,β-3h and the inclusion complexes TMACl⊂α,α-3a,
TMACl⊂α,α-3b, TMACl⊂α,α-3c, TMACl⊂α,α-3g,
TMACl⊂α,α-3h, TBABr⊂α,α-3f, TMABr⊂α,α-3g,
TMABr⊂α,α-3h, and TMAI⊂α,α-3g. This material is available
Soc. 2010, 31, 630.
(28) Frontera, A.; Gamez, P.; Mascal, M.; Mooibroek, T. J.; Reedijk,
J. Angew. Chem., Int. Ed. 2011, 50, 9564.
(29) Gorteau, V.; Bollot, G.; Mareda, J.; Perez-Velasco, A.; Matile, S.
J. Am. Chem. Soc. 2006, 128, 14788.
AUTHOR INFORMATION
■
Corresponding Author
(30) Mareda, J.; Matile, S. Chem.−Eur. J. 2009, 15, 28.
3217
dx.doi.org/10.1021/ja412098v | J. Am. Chem. Soc. 2014, 136, 3208−3218