14
H. Yang et al. / Catalysis Communications 26 (2012) 11–14
Appendix A. Supplementary data
Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.catcom.2012.04.032.
References
[1] B.B. Touré, B.S. Lane, D. Sames, Organic Letters 8 (2006) 1979–1982.
[2] S. Marhadour, M.A. Bazin, P. Marchand, Tetrahedron Letters 53 (2012) 297–300.
[3] H. Cao, H.Y. Zhan, Y.G. Lin, X.L. Lin, Z.D. Du, H.F. Jiang, Organic Letters 14 (2012)
1688–1691.
[4] A. Elhakmaoui, A. Gueiffier, J.C. Milhavet, Y. Blache, J.P. Chapat, O. Chavignon, J.C.
Teulade, R. Snoeck, G. Andrei, E.D. Clercq, Bioorganic & Medicinal Chemistry Let-
ters 4 (1994) 1937–1940.
[5] M. Andaloussi, E. Moreau, N. Masurier, J. Lacroix, R.C. Gaudreault, J.M. Chezal, A.E.
Laghdach, D. Canitrot, E. Debiton, J.C. Teulade, O. Chavignon, European Journal of
Medicinal Chemistry 43 (2008) 2505–2517.
Scheme 2. Proposed mechanism for Ru-catalyzed arylation.
[6] K. Godula, D. Sames, Science 312 (2006) 67–72.
[7] R.A. Altman, S.L. Buchwald, Nature Protocols 2 (2007) 2474–2479.
[8] J.S. Tian, T.P. Loh, Angewandte Chemie International Edition 49 (2010)
8417–8420.
[9] A. Renaudat, L. Jean-Gerard, R. Jazzar, C.E. Kefalidis, E. Clot, O. Baudoin,
Angewandte Chemie International Edition 49 (2010) 7261–7265.
[10] M. Wasa, K.S.L. Chan, J.Q. Yu, Chemistry Letters 40 (2011) 1004–1006.
[11] Q. Liu, G. Li, H. Yi, P. Wu, J. Liu, A.W. Lei, Chemistry A European Journal 17 (2011)
2353–2357.
[12] S. Qiao, K. Xie, J.S. Qi, Chinese Journal of Chemistry 28 (2010) 1441–1443.
[13] W.H. Wang, C.D. Pan, F. Chen, J.A. Cheng, Chemical Communications 47 (2011)
3978–3980.
[14] H.T. Yang, C. Xi, Z.W. Miao, R.Y. Chen, European Journal of Organic Chemistry 18
(2011) 3353–3360.
[15] A. Joshi-Pangu, M. Ganesh, M.R. Biscoe, Organic Letters 13 (2011) 1218–1221.
[16] G.L. Xie, T.Y. Li, X.M. Qu, J.C. Mao, Journal of Molecular Catalysis A: Chemical 340
(2011) 48–52.
[17] N. Matsuyama, K. Hirano, T. Satoh, M. Miura, Organic Letters 11 (2009)
4156–4159.
[18] W. Liu, H. Cao, J. Xin, L.Q. Jin, A.W. Lei, Chemistry A European Journal 17 (2011)
3588–3592.
[19] B. Li, Z.H. Wu, Y.F. Gu, C.L. Sun, B.Q. Wang, Z.J. Shi, Angewandte Chemie Interna-
tional Edition 50 (2011) 1109–1113.
aryl halides. The results show that electron-withdrawing substituted
groups on the imidazole ring of the substrate actually favor the reac-
tions. However, if the electron-withdrawing substituted group is on
the pyridine ring by applying 6-chloro-2-methyl-imidazo[1,2-a]pyri-
dine (1c) as the substrate (Table 2, entries 11–13), the chloro-group
does not affect the isolated yield of arylation products obviously.
A proposed mechanism of the direct arylation of imidazo[1,2-a]pyr-
idine 1a with 2a can be described in Scheme 2. The mechanism is con-
sistent with previous studies on the arylation of heterocycles [33]. The
first step is the C\H activation, and the reaction took place between
1a and Ru(II) catalyst to form the unstable cationic three-member
cycle intermediate A. Subsequently, abstraction of the acidic hydrogen
atom in A with the help of Cs2CO3 would generate intermediate B,
which possibly would then undergo aryl halides reversible oxidative
addition to give the intermediate C. At last, intermediate C underwent
reductive elimination to give the product 3a and release the Ru(II)
catalyst.
[20] Q.A. Chen, L. Ilies, E. Nakamura, Journal of the American Chemical Society 133
(2011) 428–429.
[21] G. Cahiez, O. Gager, F. Lecomte, Organic Letters 10 (2008) 5255–5256.
[22] Y. Kuninobu, D. Asanoma, K. Takai, Synlett 19 (2010) 2883–2886.
[23] P.P. Singh, S. Gudup, S. Ambala, U. Singh, S. Dadhwal, B. Singh, S.D. Sawant, R.A.
Vishwakarma, Chemical Communications 47 (2011) 5852–5854.
[24] T.M. Niu, Y.H. Zhang, Tetrahedron Letters 51 (2010) 6847–6851.
[25] C.L. Sun, B.J. Li, Z.J. Shi, Chemical Reviews 111 (2011) 1293–1314.
[26] A.S. Tsai, M.E. Tauchert, R.G. Bergman, J.A. Ellman, Journal of the American Chem-
ical Society 133 (2011) 1248–1250.
[27] T.J. Gong, B. Xiao, Z.J. Liu, J. Wan, J. Xu, D.F. Luo, Y. Fu, L. Liu, Organic Letters 13
(2011) 3235–3237.
[28] J. Bouffard, K. Itami, Topics in Current Chemistry 292 (2010) 231–280.
[29] H.J. Kim, M. Kim, S. Chang, Organic Letters 13 (2011) 2368–2371.
[30] Y. Na, S. Park, S.B. Han, H. Han, S. Ko, S. Chang, Journal of the American Chemical
Society 126 (2004) 250–258.
4. Conclusion
In summary, based on C\H activation, an efficient, direct Ru-
catalyzed arylation method for the arylation of imidazo[1,2-a]pyri-
dines with aryl halides was developed. The arylation exhibits high
regioselectivity for imidazo[1,2-a]pyridines containing C-2 substitut-
ed group, and the arylation product of C-3 position could be isolated
in moderate to excellent yields.
[31] E.J. Farrington, J.M. Brown, C.F.J. Barnard, E. Rowsell, Angewandte Chemie Inter-
national Edition 41 (2002) 169–171.
Acknowledgments
[32] B. Stefane, J. Fabris, F. Pozgan, European Journal of Organic Chemistry 18 (2011)
3474–3481.
[33] H. Cao, H. Zhan, D. Shen, H. Zhao, Y. Liu, Journal of Organometallic Chemistry 696
(2011) 3086–3090.
The authors gratefully acknowledge the generous financial support
from National Natural Science Foundation of China (No. 21172064,
20972045), Provincial Natural Science Foundation of Hunan (No.
10JJ2006), the Key Scientific Research Fund of Hunan Provincial Education
Department (No. 10A022), and the Starting Research Fund for Ph.D from
Hunan Institute Engineering.