Page 5 of 6
Journal of the American Chemical Society
Expansion to γ-Keto Esters. J. Am. Chem. Soc., 1987, 109, 3493–3494. (n)
Dowd, P.; Choi, S.-C. Free Radical Ring Expansion by Three and Four Car-
bons. J. Am. Chem. Soc. 1987, 109, 6548- 6549. (o) Beckwith, A. L. J.;
O’Shea, D. M.; Wetswood, S. W. Rearrangement of Suitably Constituted
Aryl, Alkyl, or Vinyl Radicals by Acyl or Cyano Group Migration. J. Am.
Chem. Soc. 1988, 110, 2565-2572. (p) Ito, Y.; Fujii, S.; Saegusa, T. Reac-
tion of 1-Silyloxybicyclo[n.1.0] alkanes with Iron(III) Chlorides. A Facile
Synthesis of 2-Cycloalkenones via Ring Enlargement of Cyclic Ketones. J.
Org. Chem. 1976, 41, 2073-2074. (q) Dowd, P.; Zhang, W. Free Radical-
Mediated Ring Expansion and Related Annulations. Chem. Rev. 1993, 93,
2091-2115. (r) Song, Z.; Fan, C.; Tu, Y. Semipinacol Rearrangement in
Natural Product Synthesis. Chem. Rev. 2011, 111, 7523–7556.
(4) (a) Ota, E.; Wang, H.; Frye, N. L.; Knowles, R. R. A Redox Strategy
for Light-Driven, Out-of-Equilibrium Isomerizations and Application to
Catalytic C–C Bond Cleavage Reactions. J. Am. Chem. Soc. 2019, 141,
1457–1462. (b) Yayla, H. G.; Wang, H.; Tarantino, K. T.; Orbe, H. S.;
Knowles, R. R. Catalytic Ring-Opening of Cyclic Alcohols Enabled by
PCET Activation of Strong O–H Bonds. J. Am. Chem. Soc. 2016, 138,
10794–10797. (c) Zhu, Q.; Graff, D. E.; Knowles, R. R. Intermolecular
Anti-Markovnikov Hydroamination of Unactivated Alkenes with Sulfona-
mides Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc.,
2018, 140, 741–747.
(5) pKa (trifluoroacetic acid) = 12.65 in MeCN; pKa (BINOL/diphenyl
phosphoric acid) = 12-13 in MeCN, see: (a) Muckerman, J. T.; Skone, J.
H.; Ning M.;.Wasada-Tsutsui, Y. Toward the accurate calculation of pKa
values in water and acetonitrile. Biochimica et Biophysica Acta. 2013, 1827,
882–891. (b) Rueping, M.; Nachtsheim, B. J.; Ieawsuwan, W.; Atodiresei,
I. Modulating the Acidity: Highly Acidic Brønsted Acids in Asymmetric
Catalysis. Angew. Chem., Int. Ed., 2011, 50, 6706-6720.
(6) Still, W. C.; Galynker, I. Chemical consequences of conformation in
macrocyclic compounds: An effective approach to remote asymmetric in-
duction. Tetrahedron 1981, 37, 3981-3996.
(7) For a-regioselective dienolate electrophilic reactions, see: (a) Cargill,
R. L.; Bushey, D. F.; Good, J. J. Alkylation of 1-cyanocyclohexene. J. Org.
Chem., 1979, 44, 300–301. (b) Gesson, J.; Jacuesy, J.; Mondon, M. Regi-
oselective dienolate formation and alkylation of alkyl 2-methyl cyclohex-
ene-1 carboxylate. Tetrahedron Lett. 1980, 21, 2509-2512. (c) Davies, S.
G.; Easton, R. J. C.; Sutton, K. H.; Walker, J. C.; Jones, R. H. Chiral Dieno-
lates: Formation and Stereoselective a-Alkylation of the Lithium
Dienolate Derived from (Z)-[(η5-C5H5)Fe(CO)(PPh3)COCH=CHMe]. X-
Ray Crystal Structure of (RS)-(Z)-[(η5-C5H5)Fe(CO)(PPh3)COCH=CH
Me]. J. Chem. Soc. Perkin Trans. 1 1987, 489-493.
(8) (a) Garst, M. E.; Bonfiglio, J. N.; Marks, J. Hydroboration-carbon
monoxide insertion of bis-olefinic amine derivatives. Synthesis of .delta.-
coniceine, pyrrolizidine, (±)-heliotridane, and (±)-pseudoheliotridane. J.
Org. Chem. 1982, 47, 1494-1500. (b) Garst, M. E.; Bonfiglio, J. N. Hydrob-
oration-carbonylation of bisolefinic amines: a facile synthesis of δ-co-
niceine. Tetrahedron Lett., 1981, 22, 2075-2076.
1
2
3
4
5
6
7
8
Experimental details, characterization data, and spectra (PDF).
Crystallographic data for 5a (CIF).
Crystallographic data for 6a (CIF).
Crystallographic data for 7a (CIF).
Crystallographic data for 31a (CIF).
AUTHOR INFORMATION
Corresponding Author
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Author Contributions
‡These authors contributed equally.
Notes
The authors declare no competing financial interests. Crystallo-
graphic data are deposited with the Cambridge Crystallographic
Data Centre (CCDC) under the following accession numbers: 5a
(1900667), 6a (1900665), 7a (1900666), and 31a (1900668).
ACKNOWLEDGMENT
Funding for the work was provided by the NIH (NIGMS R01
113105) and Bristol-Myers Squibb. K.Y. thanks the Uehara Me-
morial Foundation for a postdoctoral fellowship.
REFERENCES
(1) (a) Stephen, J. C.; Cutler, H. G.; Biologically Active Natural Prod-
ucts: Pharmaceuticals; CRC Press: Boca Raton, FL, 2000. (b) Mander, L.
N. Comprehensive Natural Products II: Chemistry and Biology; Elsevier:
Amsterdam, 2010. (c) Allen, G.; Bevington, J. C.; Booth, C.; Price, C. Com-
prehensive Polymer Science: The Synthesis, Characterization, Reactions &
Applications of Polymers; Pergamon: Oxford, 1989.
(2) Galli, C.; Mandolini, L. The Role of Ring Strain on the Ease of Ring
Closure of Bifunctional Chain Molecules. Eur. J. Org. Chem. 2000, 3117–
3125.
(3) (a) Sun, T.; Zhang, Y.; Qiu, B.; Wang, Y.; Qin, Y.; Dong, G.; Xu, T.
Rhodium(I)-Catalyzed Carboacylation/Aromatization Cascade Initiated by
Regioselective C−C Activation of Benzocyclobutenones. Angew. Chem.
Int. Ed. 2018, 57, 2859–2863. (b) Deng, L.; Jin, L.; Dong, G. Fused-Ring
Formation via an Intramolecular "Cut-and-Sew" Reaction between Cyclo-
butanones and Alkynes. Angew. Chem. Int. Ed. 2018, 57, 2702–2706. (c)
Zhou, X.; Dong, G. Nickel-Catalyzed Chemo- and Enantioselective Cou-
pling between Cyclobutanones and Allenes: Rapid Synthesis of [3.2.2] Bi-
cycles. Angew. Chem. Int. Ed. 2016, 55, 15091–15095. (d) Xia, Y.; Lu, G.;
Liu, P.; Dong, G. Catalytic Activation of Carbon–carbon Bonds in Cyclo-
pentanones. Nature, 2016, 539, 546–550. (e) Deng, L; Xu, T.; Li, H.; Dong,
G. Enantioselective Rh-catalyzed Carboacylation of C=N Bonds via C−C
Activation of Benzocyclobutenones. J. Am. Chem. Soc. 2016, 138, 369–
374. (f) Xu, T.; Dong, G. Rh-Catalyzed Regioselective Carboacylation of
Olefins: A C−C Activation Approach to Access Fused-Ring Systems." An-
gew. Chem., Int. Ed. 2012, 51, 7567-7571. (g) Hu, A.; Chen, Y.; Guo, J.;
Yu, N.; An, Q., Zuo, Z. Cerium-Catalyzed Formal Cycloaddition of Cyclo-
alkanols with Alkenes through Dual Photoexcitation. J. Am. Chem. Soc.
2018, 140, 13580–13585. (h) Jin, S.; Nguyen, V. T.; Dang, H. T.; Nguyen,
D. P.; Arman, H. D.; Larionov, O. V. Photoinduced Carboborative Ring
Contraction Enables Regio- and Stereoselective Synthesis of Multiply Sub-
stituted Five-Membered Carbocycles and Heterocycles. J. Am. Chem.
Soc. 2017, 139, 11365–11368. (i) Wang, N.; Gu, Q.; Li, Z.; Guo, Y.; Kiu,
X. Angew. Chem., Int. Ed. 2018, 57, 14225–14229. (j) Chen, P.; Billett B.
A.; Tsukamoto T.; Dong, G. “Cut and Sew” Transformations via Transi-
tion-Metal-Catalyzed Carbon–Carbon Bond Activation. ACS Catal. 2017,
7, 1340–1360. (k) Fumagalli, G., Stanton S., Bower, J. F., Recent Method-
ologies That Exploit C−C Single-Bond Cleavage of Strained Ring Systems
by Transition Metal Complexes. Chem. Rev. 2017, 117, 9404–9432. (l)
Donald, J. R., Unsworth, W. P., Ring-Expansion Reactions in the Synthesis
of Macrocycles and Medium-Sized Rings. Chem. Eur. J. 2017, 23, 8780-
8799. (m) Dowd, P.; Choi, S.-C,. A New Tri-n-butyltin Hydride Based Re-
arrangement of Bromomethyl b-Keto Esters. A Synthetically Useful Ring
(9) (a) Roberston, J.; Stevens, K. Pyrrolizidine alkaloids. Nat. Prod. Rep.,
2014, 31, 1721-1788. (b) Michael, J. P. Indolizidine and Quinolizidine Al-
kaloids. Nat. Prod. Rep., 2008, 25, 139–165.
(10) Lovett, G. H.; Sparling, B. A. Decarboxylative Anti-Michael Addi-
tion to Olefins Mediated by Photoredox Catalysis. Org. Lett., 2016, 18,
3494–3497.
(11) Sim, B. A.; Griller, D.; Wayner, D. D. M. Reduction potentials for
substituted benzyl radicals: pKa values for the corresponding toluenes. J.
Am. Chem. Soc., 1989, 111, 754–755.
(12) Romero, N.; Nicewicz, D. A. Mechanistic Insight into the Photore-
dox Catalysis of Anti-Markovnikov Alkene Hydrofunctionalization Reac-
tions. J. Am. Chem. Soc., 2014, 136, 17024–17035.
(13) Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Thiyl Radicals in
Organic Synthesis. Chem. Rev. 2014, 114, 2587−2693.
(14) Urabe, D.; Asaba, T.; Inoue, M. Convergent Strategies in Total Syn-
theses of Complex Terpenoids. Chem. Rev. 2015, 115, 9207–9231.
(15) (a) Galatsis, P.; Millan, S. D.; Faber, T. 1-Alkenylcycloalkoxy Rad-
ical Chemistry. A Two-Carbon Ring Expansion Methodology. J. Org.
Chem. 1993, 58, 1215-1220. (b) Galatsis, P.; Millan, S. D. Use of Iodoben-
zene Diacetate for the Synthesis of α-Iodoepoxides. Tetrehedron. 1991, 51,
7493–7496. (c) Aureliano Antunes, C. S.; Bietti, M.; Lanzalunga, O.; Sala-
mone, M. Photolysis of 1-Alkylcycloalkanols in the Presence of (Diacetox-
yiodo)benzene and I2. Intramolecular Selectivity in the β-Scission Reac-
tions of the Intermediate 1-Alkylcycloalkoxyl Radicals. J. Org. Chem.
2004, 69, 5281-5289.
ACS Paragon Plus Environment