Table 3 Reaction scope of aromatic ketones 1a
Further studies on the applications of this reaction will be
reported in due course.
We acknowledge and appreciate the support of the National
Natural Science Foundation of China (Grants 20872042, and
201032001) and PCSIRT (No. IRT0953).
Notes and references
Product Yield
ratio (3 : 4) (3 + 4) (%)
Entry
17
3
4
1 (a) L. F. Tietze, G. Brasche and K. Gericke, Domino Reactions in
Organic Synthesis, Wiley-VCH, Weinheim, Germany, 2006;
(b) J. P. Zhu and H. Bienayme, Multicomponent Reactions, Wiley-
´
VCH, Weinheim, 2005; (c) L. F. Tietze, Chem. Rev., 1996, 96, 115;
(d) K. C. Nicolaou, T. Montagnon and S. A. Snyder, Chem.
Commun., 2003, 551; (e) A. Padwa and S. K. Bur, Tetrahedron,
2007, 63, 5341; (f) N. Shindoh, Y. Takemoto and K. Takasu,
Chem.–Eur. J., 2009, 15, 12168.
58 : 42
91
2 (a) G.-D. Yin, B.-H. Zhou, X.-G. Meng, A.-X. Wu and Y.-J. Pan,
Org. Lett., 2006, 8, 2245; (b) G.-D. Yin, Z.-H. Wang, A.-H. Chen,
M. Gao, A.-X. Wu and Y.-J. Pan, J. Org. Chem., 2008, 73, 3377;
(c) M. Gao, Y. Yang, Y.-D. Wu, C. Deng, L.-P. Cao, X.-G. Meng
and A.-X. Wu, Org. Lett., 2010, 12, 1856; (d) M. Gao, Y. Yang,
Y.-D. Wu, C. Deng, W.-M. Shu, D.-X. Zhang, L.-P. Cao,
N.-F. She and A.-X. Wu, Org. Lett., 2010, 12, 4026;
(e) Y. Yang, M. Gao, L.-M. Wu, C. Deng, D.-X. Zhang,
Y. Gao, Y.-P. Zhu and A.-X. Wu, Tetrahedron, 2011, 67, 5142.
3 D. C. Palmer and S. Venkatraman, The Chemistry of Heterocyclic
Compounds, Volume 60: Oxazoles: Synthesis, Reactions and
Spectroscopy, Part A, John Wiley & Sons, Inc., 2003.
18
58 : 42
55 : 45
95
91
19
a
Reaction was performed with methyl ketone 1 (1 mmol), benzoin 2
(1.1 mmol), ammonium acetate (2 mmol), and I2 (2,5 mmol) in DMSO
(3 mL) at 120 1C for 5 h.
4 (a) C. J. Forsyth, F. Ahmed, R. D. Cink and C. S. Lee, J. Am.
Chem. Soc., 1998, 120, 5597; (b) Z. Jin, Nat. Prod. Rep., 2006,
23, 464; (c) A. W. G. Burgett, Q. Li, Q. Wei and P. G. Harran,
Angew. Chem., Int. Ed., 2003, 42, 4961; (d) P. Wipf, Chem. Rev.,
1995, 95, 2115; (e) E. Riego, D. Hernandez, F. Albericio and
´
M. Alvarez, Synthesis, 2005, 1907; (f) A. S. Kende, K. Kawamura
and R. J. DeVita, J. Am. Chem. Soc., 1990, 112, 4070; (g) E. Vedejs
and D. A. Barda, Org. Lett., 2000, 2, 1033.
5 (a) E. Vedejs and D. A. Barda, Org. Lett., 2000, 2, 1033;
(b) J. M. Atkins and E. Vedejs, Org. Lett., 2005, 7, 3351;
(c) J. M. Zhang and M. A. Ciufolini, Org. Lett., 2009, 11, 2389.
6 (a) P. G. Ferrini and A. Marxer, Angew. Chem., Int. Ed. Engl., 1963,
2, 99; (b) R. Nesi, S. Turchi and D. Giomi, J. Org. Chem., 1996,
61, 7933; (c) C. Verrier, T. Martin, C. Hoarau and F. Marsais,
J. Org. Chem., 2008, 73, 7383; (d) B. Shi, A. J. Blake, W. Lewis,
I. B. Campbell, B. D. Judkins and C. J. Moody, J. Org. Chem., 2005,
75, 152; (e) E. Merkul and T. J. J. Muller, Chem. Commun., 2006,
4817; (f) H.-F. Jiang, H.-W. Huang, H. Cao and C.-R. Qi, Org.
Lett., 2010, 12, 5561; (g) C.-F. Wan, J.-T. Zhang, S.-J. Wang,
J.-M. Fan and Z.-Y. Wang, Org. Lett., 2010, 12, 2338;
(h) P. Y. Coqueron, C. Didier and M. A. Ciufolini, Angew. Chem.,
Int. Ed., 2003, 42, 1411; (i) T. Lechel, D. Lentz and H. U. Reissig,
Chem.–Eur.J., 2009, 15, 5432.
Scheme 2 Intermediates of the reaction.
7 (a) A. J. Phillips, Y. Uto, P. Wipf, M. J. Reno and D. R. Williams,
Org. Lett., 2000, 2, 1165; (b) A. I. Meyers and F. X. Tavares,
J. Org. Chem., 1996, 61, 8207; (c) D. R. Williams, D. P. Lowder,
G.-Y. Gu and D. A. Brooks, Tetrahedron Lett., 1997, 38, 331.
8 (a) E. F. Flegeau, M. E. Popkin and M. F. Greaney, Org. Lett.,
2006, 8, 2495; (b) K. Lee, C. M. Counceller and J. P. Stambuli,
Org. Lett., 2009, 11, 1457; (c) D. R. Williams and L. F. Fu, Org.
Lett., 2010, 12, 808.
9 (a) M. Kidwai and P. Mothsra, Tetrahedron, 2006, 47, 5029;
(b) B. Sadeghi, B. B. F. Mirjalili and M. M. Hashemi, Tetrahedron
Lett., 2008, 49, 2575.
10 L.-P. Cao, J.-Y. Ding, M. Gao, Z.-G. Wang, J. Li and A.-X. Wu,
Org. Lett., 2009, 11, 3810.
Scheme 3 The plausible mechanism of the present reaction.
verify the possible reaction mechanism, the reactions of 1a with 5,
6a and 5, 6a with 2, 8a with 2 and 8a with 7 are used to synthesize
3a. Fortunately, 3a is obtained from the above reactions.15
In conclusion, in this study, we have developed a novel
method for the synthesis of polysubstituted oxazoles from
methyl ketones and benzoins based on convergent integration
of two self-labor domino sequences. Owing to mild reaction
conditions, simple operation and without involving metal
catalysts, this reaction should be of great utility in medical
chemistry. To the best of our knowledge, this transformation
should be the first self-sequenced multipath integration reaction,
which could provide an efficient example for self-labor logical
synthesis of organic compounds and their derivatives in the research
of domino reactions, cascade reactions and tandem reactions.1,16
11 Fig. S4 (See ESIw).
12 The details of the crystal data have been deposited with Cambridge
Crystallographic Data Centre as Supplementary Publication,
CCDC 848144–848146.
13 All of benzoin was oxidized to benzil detected by GC-MS.
14 W. B. Wheatley, W. E. Fitzgibbon and L. C. Chexey, J. Org.
Chem., 1953, 18, 1564.
15 Fig. S5 (See ESIw).
16 J. Zhu and H. Bienayme
Weinheim, 2005, and references therein.
´
, Multicomponent Reactions, Wiley-VCH,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 3485–3487 3487