A Powerful Activator for the Regioselective Alcoholysis of Aziridines
lyzed transformations[50,51]) with subsequent deprotec-
tion[37,46] or immediate deprotection[39] to the primary
amine, which was demonstrated for two selected examples.
Currently, the methodology of the DNs-mediated
alcoholysis is expanded towards more valuable alcohols
that cannot be applied as solvents in excess amounts. There-
fore, appropriate co-solvents are being evaluated and trans-
fer to microwave- and flow-conditions is under investiga-
tion. The successful implementation of this new methodol-
ogy to the initial research problem will be reported together
with the corresponding pharmacological data.
[7] J. Karban, J. Sykora, J. Kroutil, I. Cisarova, Z. Padelkova, M.
Budesinsky, J. Org. Chem. 2010, 75, 3443–3446.
[8] K. D. Park, P. Morieux, C. Salome, S. W. Cotten, O. Ream-
tong, C. Eyers, S. J. Gaskell, J. P. Stables, R. Liu, H. Kohn, J.
Med. Chem. 2009, 52, 6897–6911.
[9] H. M. I. Osborn, J. Sweeney, Tetrahedron: Asymmetry 1997, 8,
1693–1715.
[10] J. Sweeney, Eur. J. Org. Chem. 2009, 4911–4919.
[11] A. C. Mayer, A.-F. Salit, C. Bolm, Chem. Commun. 2008,
5975–5977.
[12] L. Ma, P. Jiao, Q. Zhang, D.-M. Du, J. Xu, Tetrahedron: Asym-
metry 2007, 18, 878–884.
[13] Y. Cui, C. He, J. Am. Chem. Soc. 2003, 125, 16202–16203.
[14] D. A. Evans, M. M. Faul, M. T. Bilodeau, J. Org. Chem. 1991,
56, 6744–6746.
[15] P. Y. Lin, G. Bentz, H. Stamm, J. Prakt. Chem./Chem.-Ztg.
1993, 335, 23–34.
[16] H. Stamm, J. Prakt. Chem. 1999, 341, 319–331.
[17] M. L. Berger, C. Schodl, C. R. Noe, Eur. J. Med. Chem. 1998,
33, 3–14.
Experimental Section
Representative Procedure for the Alcoholysis of DNs-Aziridines 7–9
(S)-N-[1-Benzyl-2-(1-methylethoxy)ethyl]-2,4-dinitrophenylsulfon-
amide (14a): Dry iPrOH (4 mL) was added to 2-benzylaziridine (7;
215 mg, 0.592 mmol), and the mixture was stirred in closed Pyrex
glassware at 65 °C external temperature under HPLC monitoring.
Evaporation and analysis (1H NMR spectroscopy) of the crude
material indicated complete conversion to diastereomers 14a/14b in
a ratio of 96:4. Recrystallization (Et2O/hexane) gave pure 14a
(200 mg, 80%) as white crystals. M.p. 106–107 °C (MTBE). HPLC:
tR = 12.99 min. [α]2D0 = +55 (c = 1.0, CHCl3). C18H21N3O7S
(423.45): calcd. C 51.06, H 5.00, N 9.92, S 7.57; found C 51.05, H
[18] M. L. Berger, C. R. Noe, Curr. Top. Med. Chem. 2003, 3, 51–
64.
[19] T. Poehler, O. Schadt, D. Niepel, P. Rebernik, M. L. Berger,
C. R. Noe, Eur. J. Med. Chem. 2007, 42, 175–197.
[20] X. E. Hu, Tetrahedron 2004, 60, 2701–2743.
[21] P. E. Maligres, M. M. See, D. Askin, P. J. Reider, Tetrahedron
Lett. 1997, 38, 5253–5256.
[22] M. D’Hooghe, M. Rottiers, I. Kerkaert, N. De Kimpe, Tetrahe-
dron 2005, 61, 8746–8751.
[23] I. McCort, S. Ballereau, A. Dureault, J.-C. Depezay, Tetrahe-
dron 2002, 58, 8947–8955.
[24] T. Shono, Y. Matsumura, S. Katoh, K. Takeuchi, K. Sasaki, T.
Kamada, R. Shimizu, J. Am. Chem. Soc. 1990, 112, 2368–2372.
5.02, N 9.88, S 6.37. IR (KBr): ν = 3369, 3091, 2965, 2876, 1610,
˜
1551, 1426, 1367, 1348, 1168, 1080, 912, 839, 816, 747 cm–1. 1H
NMR (200 MHz, CDCl3): δ = 1.07 (d, J = 6.1 Hz, 3 H, CH3), 1.09
(d, J = 6.1 Hz, 3 H, CH3), 2.77 (dd, J = 14.0, 8.4 Hz, 1 H, PhCHH),
2.95 (dd, J = 13.9, 6.2 Hz, 1 H, PhCHH), 3.30–3.62 (m, 3 H,
OCH2, OCH), 3.72–3.94 (m, 1 H, NCH), 5.75 (d, J = 8.1 Hz, 1 H,
NH), 6.95–7.15 (m, 5 H, 5 PhH), 8.05 (d, J = 8.6 Hz, 1 H, DNs-
H6), 8.35 (dd, J = 8.7, 2.1 Hz, 1 H, DNs-H5), 8.55 (d, J = 2.0 Hz,
1 H, DNs-H3) ppm. 13C NMR (50 MHz, CDCl3): δ = 21.8 (q,
CH3), 21.9 (q, CH3), 38.8 (t, PhCH2), 57.5 (d, NCH), 69.6 (t,
OCH2), 72.3 (d, OCH), 120.6 (d, DNs-C3), 126.6, 127.1 (2 d, PhC4,
DNs-C5), 128.4 (d, PhC3/5), 129.3 (d, PhC2/6), 131.8 (d, DNs-C6),
137.2 (s, PhC1), 140.1 (s, DNs-C), 147.3 (s, DNs-C), 149.3 (s, DNs-
C) ppm. MS (ESI): m/z = 422 [M – H]–, 358 [M – SO2 – H]–.
[25]
B. Bucholz, H. Stamm, Isr. J. Chem. 1986, 27, 17–23.
[26] G. D. K. Kumar, S. Baskaran, Synlett 2004, 1719–1722.
[27] S. Chandrasekhar, C. Narsihmulu, S. S. Sultana, Tetrahedron
Lett. 2002, 43, 7361–7363.
[28] B. A. B. Prasad, G. Sekar, V. K. Singh, Tetrahedron Lett. 2000,
41, 4677–4679.
[29] B. A. Bhanu Prasad, R. Sanghi, V. K. Singh, Tetrahedron 2002,
58, 7355–7363.
[30] Y. Li, D. Gu, X. Xu, S. Ji, Chin. J. Chem. 2009, 27, 1558–1562.
[31] M. K. Ghorai, K. Das, D. Shukla, J. Org. Chem. 2007, 72,
5859–5862.
[32] H. Liu, V. R. Pattabiraman, J. C. Vederas, Org. Lett. 2007, 9,
4211–4214.
[33] P. H. Di Chenna, F. Robert-Peillard, P. Dauban, R. H. Dodd,
Org. Lett. 2004, 6, 4503–4505.
[34] G. Rinaudo, S. Narizuka, N. Askari, B. Crousse, D. Bonnet-
Delpon, Tetrahedron Lett. 2006, 47, 2065–2068.
[35] H. Mao, G. J. Joly, K. Peeters, G. J. Hoornaert, F. Comper-
nolle, Tetrahedron 2001, 57, 6955–6967.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details for the preparation and characterization
1
(including H and 13C NMR spectra) of all new compounds.
Acknowledgments
[36] L. K. Ottesen, J. W. Jaroszewski, H. Franzyk, J. Org. Chem.
2010, 75, 4983–4991.
Prof. Marko D. Mihovilovic is gratefully acknowledged for helpful
discussions. Boehringer Ingelheim Austria is gratefully acknowl-
edged for providing the authors with the Chiralpak AD-H column
for the analysis of the enantiomeric purity.
[37] T. Fukuyama, M. Cheung, C.-K. Jow, Y. Hidai, T. Kan, Tetra-
hedron Lett. 1997, 38, 5831–5834.
[38] T. Kan, T. Fukuyama, Chem. Commun. 2004, 353–359.
[39] K.-I. Nihei, M. J. Kato, T. Yamane, M. S. Palma, K. Konno,
Synlett 2001, 1167–1169.
[40] E. Vellemaee, O. Lebedev, U. Maeeorg, Tetrahedron Lett. 2008,
49, 1373–1375.
[41] T. Ankner, G. Hilmersson, Org. Lett. 2009, 11, 503–506.
[42] J. Farras, X. Ginesta, P. W. Sutton, J. Taltavull, F. Egeler, P.
Romea, F. Urpi, J. Vilarrasa, Tetrahedron 2001, 57, 7665–7674.
[43] Y. Qin, C. Wang, Z. Huang, X. Xiao, Y. Jiang, J. Org. Chem.
2004, 69, 8533–8536.
[1] W. McCoull, F. A. Davis, Synthesis 2000, 1347–1365.
[2] D. Tanner, Angew. Chem. 1994, 106, 625; Angew. Chem. Int.
Ed. Engl. 1994, 33, 599–619.
[3] B. Zwanenburg, P. ten Holte, Top. Curr. Chem. 2001, 216, 93–
124.
[4] M. Shibasaki, M. Kanai, Eur. J. Org. Chem. 2008, 1839–1850.
[5] P. Lu, Tetrahedron 2010, 66, 2549–2560.
[6] M. K. Ghorai, A. Kumar, D. P. Tiwari, J. Org. Chem. 2010, 75,
137–151.
[44]
W. Zhang, K. Ye, L. Liu, M. Cao, Youji Huaxue 2009, 29, 794–
797.
[45]
A. I. Meyers, G. S. Poindexter, Z. Brich, J. Org. Chem. 1978,
43, 892–898.
Eur. J. Org. Chem. 2011, 3126–3130
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
3129