2434
A. S. Mayhoub et al. / Bioorg. Med. Chem. 20 (2012) 2427–2434
4.9.3. 4-(6-Methoxypyridin-3-yl)-2-(pyridin-3-yl)thiazole (23)
White solid (12 mg, 47%): mp 129–130 °C. 1H NMR (CDCl3) d
9.22 (d, J = 2.1 Hz, 1H), 8.77 (d, J = 2.4 Hz, 1H), 8.66 (dd, J = 1.8,
6.0 Hz, 1H), 8.29 (dt, J = 1.8, 6.0 Hz, 1H), 8.15 (dd, J = 2.4, 8.7 Hz,
1H), 7.44 (s, 1H), 7.28 (dd, J = 1.8, 8.7 Hz, 1H), 6.82 (d, J = 8.7 Hz,
1H), 3.98 (s, 3H); 13C NMR (CDCl3) d 164.69, 164.02 (2C), 153.87,
150.88, 147.70, 144.98, 136.83, 133.56, 129.49, 123.70, 112.21,
110.83, 53.61; ESI MS (m/z, rel intensity) 270 (MH+, 100); HRMS
(ESI), m/z MH+ 270.0699, calcd for C14H12N3OS 270.0701; HPLC
purity (C-18 reverse phase column): 98.01% (methanol–H2O, 9:1).
(excitation) and 530 nm (emission) every 10 s for at least 5 min.
Michaelis–Menten and Dixon plots were used to evaluate the
resulting data, and Ki values were calculated. Error limits represent
three independent experiments for each compound.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
4.10. Molecular modeling
1. Chow, L. W.; Yip, A. Y.; Loo, W. T.; Toi, M. Cancer Lett. 2008, 262, 232. and
references 1 and 2 cited therein.
2. American Cancer Society. Brest Cancer Facts & Figures 2009–2010; American
Cancer Society, Inc.: Atlanta.
3. Chen, S.; Zhou, D.; Okubo, T.; Kao, Y. C.; Eng, E. T.; Grube, B.; Kwon, A.; Yang, C.;
Yu, B. Ann. N.Y. Acad. Sci. 2002, 963, 229.
4. Yanyan, H.; Michael, C.; Yate-Ching, Y.; Shiuan, C. Biochem. Pharmacol. 2008, 75,
1161.
5. Toniolo, P. G.; Levitz, M.; Zeleniuch-Jacquotte, A.; Banerjee, S.; Koenig, K. L.;
Shore, R. E.; Strax, P.; Pasternack, B. S. J. Natl. Cancer Inst. 1995, 87, 190.
6. (a) Wiseman, L. R.; McTavish, D. Drugs 1993, 45, 66; (b) Clemett, D.; Lamb, H. M.
Drugs 2000, 59, 1279.
Compounds of interest were built with Sybyl 7.1 software and
minimized to 0.01 kcal/mol by the Powell method, using Gastei-
ger–Hückel charges and the Tripos force field. The energy-opti-
mized compounds were docked into the androgen binding pocket
in aromatase after removal of the structure of the natural ligand.
The parameters were set as the default values for GOLD. The max-
imum distance between hydrogen bond donors and acceptors for
hydrogen bonding was set at 3.5 Å. After docking, the first pose
conformations of compounds of interest were merged into the li-
gand–free protein. The new ligand–protein complex was subse-
quently subjected to energy minimization using the Amber force
field with Amber charges. During the energy minimization, the
structure of the compounds of interest and a surrounding 10 Å
sphere of the protein were allowed to move. The structure of the
remaining protein was kept frozen. The energy minimization was
performed using the Powell method with a 0.05 kcal/(mol Å) en-
ergy gradient convergence criterion and a distance dependent
dielectric function.
7. Wellington, K.; Faulds, D. M. Drugs 2002, 62, 2483.
8. (a) Buzdar, A.; Douma, J.; Davidson, N.; Elledge, R.; Morgan, M.; Smith, R.;
Porter, L.; Nabholtz, J.; Xiang, X.; Brady, C. J. Clin. Oncol. 2001, 19, 3357; (b)
Eisen, A.; Trudeau, M.; Shelley, W.; Messersmith, H.; Pritchard, K. I. Cancer
Treat. Rev. 2008, 34, 157.
9. Yahiaoui, S.; Fagnere, C.; Pouget, C.; Buxeraud, J.; Chulia, A. Bioorg. Med. Chem.
2008, 16, 1474.
10. (a) Plourde, P. V.; Dyroff, M.; Dowsett, M.; Demers, L.; Yates, R.; Webster, A. J.
Steroid Biochem. Mol. Biol. 1995, 53, 175; (b) Bossche, V.; Koymans, M. H. Breast
Cancer Res. Treat. 1994, 30, 43; (c) Mitrenga, M.; Hartmann, R. W. Eur. J. Med.
Chem. 1995, 30, 241.
11. (a) Pizarro, J. G.; Verdaguer, E.; Ancrenaz, V.; Junyent, F.; Sureda, F.; Pallàs, M.;
Folch, J.; Camins, A. Neurochem. Res. 2011, 36, 187; (b) Oi, N.; Jeong, C. H.;
Nadas, J.; Cho, Y. Y.; Pugliese, A.; Bode, A. M.; Dong, Z. Cancer Res. 2010, 70,
9755.
12. (a) Carbó, N.; Costelli, P.; Baccino, F. M.; López-Soriano, F. J.; Argilés, J. M.
Biochem. Biophys. Res. Commun. 1999, 254, 739; (b) Chen, Y.; Tseng, S. H.; Lai, H.
S.; Chen, W. J. Surgery 2004, 136, 57; (c) Roy, P.; Kalra, N.; Prasad, S.; George, J.;
Shukla, Y. Pharm. Res. 2009, 26, 211.
13. Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W. W.;
Fong, H. H. S.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G.; Moon, R. C.;
Mezzuto, J. M. Science 1997, 275, 218.
4.11. Biological assay
4.11.1. Aromatase assay
Aromatase activity was assayed as previously reported, with the
necessary modifications to assay in a 384-well plate.29 Briefly, the
test compound (3.5 lL) was preincubated with 30 lL of NADPH-
regenerating system (2.6 mM NADP+, 7.6 mM glucose 6-phosphate,
0.8 U/mL glucose-6-phosphate dehydrogenase, 13.9 mM MgCl2,
and 1 mg/mL albumin in 50 mM potassium phosphate buffer, pH
7.4) for 10 min at 37 °C. The enzyme and substrate mixture
14. Dudley, J. I.; Lekli, I.; Mukherjee, S.; Das, M.; Bertelli, A. A. A.; Das, D. K. J. Agric.
Food Chem. 2008, 56, 9362.
15. Aziz, M. H.; Kumar, R.; Ahmad, N. Int. J. Oncol. 2003, 23, 17.
16. Hoshino, J.; Park, E.; Kondratyuk, T. P.; Marler, L.; Pezzuto, J. M.; van Breemen,
R. B.; Mo, S.; Li, Y.; Cushman, M. J. Med. Chem. 2010, 53, 5033.
17. Mayhoub, A. S.; Marler, L.; Kondratyuk, T.; Park, E.; Pezzuto, J.; Cushman, M.
Bioorg. Med. Chem. 2012, 20, 510.
18. Strasser-Weippl, K.; Goss, P. E. J. Clin. Oncol. 2005, 23, 1751.
19. Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Nature 2009, 457, 219.
20. Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Protein
Struct. Funct. Genet. 2003, 52, 609.
(33 lL of 1 lM CYP19 enzyme, BD Biosciences, 0.4 lM dibenzylflu-
orescein, 4 mg/mL albumin in 50 mM potassium phosphate, pH
7.4) was added, and the plate was incubated for 30 min at 37 °C be-
fore quenching with 25 lL of 2 N NaOH. After termination of the
reaction and shaking for 5 min, the plate was further incubated
for 2 h at 37 °C. This enhances the ratio of signal to background.
Fluorescence was measured at 485 nm (excitation) and 530 nm
(emission). IC50 values were based on three independent experi-
ments performed in duplicate using five concentrations of test sub-
stance. Letrozole, anastrozole, and fadrozole were used as positive
controls.
21. (a) Shah, A. A.; Khan, Z. A.; Choudhary, N.; Loholter, C.; Schafer, S.; Marie, G. P.
L.; Farooq, U.; Witulski, B.; Wirth, T. Org. Lett. 2009, 11, 3578; (b) Cheng, D.;
Chen, Z. Synth. Commun. 2002, 32, 2155; (c) Yan, M.; Chen, Z.; Zheng, Q. J. Chem.
Res. (S) 2003, 618; (d) Patil, P. C.; Bhalerao, D. S.; Dangate, P. S.; Akamanchi, K.
G. Tetrahedron Lett. 2009, 50, 5820; (e) Isobe, T.; Ishikawa, T. J. Org. Chem. 1999,
64, 6989; (f) Forlani, L.; Lugli, A.; Boga, C.; Corradi, A. B.; Sgarabotto, P. J.
Heterocycl. Chem. 2000, 37, 63.
22. Howe, R. K.; Shelton, B. R. J. Org. Chem. 1981, 46, 771.
23. Chill, T. S.; Mebane, C. R. Synth. Commun. 2010, 40, 2014.
24. Nuriev, V. N.; Zyk, N. V.; Vatsadze, S. Z. ARKIVOC 2005, 4, 208.
25. Santora, V.; Askew, B.; Ghose, A.; Hague, A.; Kim, T. S.; Laber, E.; Li, A.; Lian, B.;
Liu, G.; Norman, M. H.; Smith, L.; Tasker, A.; Tegley, C.; Yang, K. PCT Int. Appl.,
2002014311, 2002.
Kinetic analyses were performed essentially as described above.
Test compounds were preincubated with 30 lL of NADPH regener-
ating system (2.6 mM NADP+, 7.6 mM glucose 6-phosphate, 0.8 U/
mL glucose 6-phosphate dehydrogenase, 13.9 mM MgCl2, and
1 mg/mL albumin in 50 mM potassium phosphate buffer, pH 7.4)
for 10 min at 37 °C. A range of eight concentrations centered
around the IC50 was tested for each inhibitor. Substrate was added
at three concentrations: 800, 400, and 200 nM. Finally, CYP19
26. Dunn, A. D. Org. Prep. Proced. Int. 1999, 31, 120.
27. El-Deeb, I. M.; Lee, S. H. Bioorg. Med. Chem. 2010, 18, 3860.
28. Wu, T. Y. H.; Juteau, H.; Ducharme, Y.; Friesen, R. W.; Guiral, S.; Dufresne, L.;
Poirier, H.; Salem, M.; Riendeau, D.; Mancini, J.; Brideau, C. Bioorg. Med. Chem.
Lett. 2010, 20, 6978.
29. Maiti, A.; Cuendet, M.; Croy, V. L.; Endringer, D. C.; Pezzuto, J. M.; Cushman, M.
J. Med. Chem. 2007, 50, 2799.
(1 lM) was added, and fluorescence was measured at 485 nm