Journal of the American Chemical Society
Communication
1
Notes
Fc−H2P−C60-loaded cpHDL, we could conclude that O2-
induced membrane damage is not involved in the depolariza-
tion observed in this study.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
Similar depolarization behavior was noted for the PC12 cells
treated with the Fc−ZnP−C60-loaded cpHDL (Figure S16),
but the degree of the depolarization (9 mV) was smaller than
for Fc−H2P−C60-loaded cpHDL. This result appears to
contradict the consideration that the depolarization occurred
through the CS state of Fc−H2P−C60 under illumination, as
the charge-separation efficiency of Fc−ZnP−C60 (0.99) is
higher than that of Fc−H2P−C60 (0.25) in benzonitrile
solution.12,13 One explanation for this discrepancy is that the
charge-separation efficiency is largely attenuated by aggregation
of the charge-separation molecules. As described above, Fc−
ZnP−C60 has an increased tendency to aggregate in cpHDL
and DMSO in comparison with Fc−H2P−C60. Thus, the
intense aggregation of Fc−ZnP−C60 on the membrane surface
■
This work was supported by the WPI Initiative of MEXT,
Japan, and in part by a Health Labor Sciences Research Grant
(nano-001 to N.M.) and by Innovative Areas, MEXT (N.M.),
and NRF/MEST of Korea through WCU(R31-2008-000-
10010-0) and GRL (2010-00353) Programs (S.F.).
REFERENCES
■
(1) Shoseyov, O.; Levy, I. Nanobiotechnology: Bioinspired Devices and
Materials of the Future; Humana Press: Totowa, NJ, 2010.
(2) Miller, A. D.; Tanner, J. Essentials of Chemical Biology: Structure
and Dynamics of Biological Macromolecules; Wiley: Chichester, U.K.,
2008.
(3) Koce
309, 755.
̧ r, A.; Walko, M.; Meijberg, W.; Feringa, B. L. Science 2005,
1
may quench ZnP* or deactivate the CS state, decreasing the
(4) van den Heuvel, M. G. L.; Dekker, C. Science 2007, 317, 333.
(5) Steinberg-Yfrach, G.; Rigaud, J.-L.; Durantini, E. N.; Moore, A. L.;
Gust, D.; Moore, T. A. Nature 1998, 392, 479.
effect of the CS state on the membrane potential.
PC12 cells show a sharp increase in the membrane potential
in response to physiological stimuli.24 Relative to such stimuli,
illuminated Fc−H2P−C60 slowly altered the membrane
potential (Figure 3a), although the CS state of Fc−H2P−C60
is formed in ∼1 ns after the illumination.12,13 In addition, the
depolarization induced by the illuminated Fc−H2P−C60 was
not reversible. At present, the reasons for these behaviors are
not clear, but slow dynamic movement of the charge-separation
molecules on the membrane surface may be induced by the
initial resting potential of −70 mV, eventually yielding a direct
interaction between the voltage-gated potassium channels and
the charge-separation molecules.
In conclusion, we have successfully controlled the membrane
potential and ion transport across the PC12 cell membrane by
using ferrocene−porphyrin−fullerene triad molecules, cell-
penetrating HDL, and light. The results obtained here provide
valuable and fundamental information on interactions between
the photoinduced CS state and the biological membrane. More
importantly, this is the first optogenetic method utilizing the
photoinduced CS state of D−A-linked molecules on the intact
cell membrane. It should also be noted that our membranous
nanocarrier, cpHDL, enabled the efficient delivery of the triad
to the outer surface of the intact cell membrane. Photo-
regulation of the cell membrane potential and ion transport
across the membrane using charge separation is a potential
strategy for controlling cell functions in a spatiotemporal
manner that might be useful for activating neuronal cells. At
present, the degree of polarization and photoreversibility is
insufficient to control the firing of neuronal cells, but further
sophisticated molecular design of charge-separation molecules
will allow us to achieve such events using light.
(6) Szobota, S.; Isacoff, E. Y. Annu. Rev. Biophys. 2010, 39, 329.
(7) Fiala, A.; Suska, A.; Schluter, O. M. Curr. Biol. 2010, 20, R897.
̈
(8) Lima, S. Q.; Miesenbock, G. Cell 2005, 121, 141.
̈
(9) Banghart, M.; Borges, K.; Isacoff, E.; Trauner, D.; Kramer, R. H.
Nat. Neurosci. 2004, 7, 1381.
(10) Nagel, G.; Ollig, D.; Fuhrmann, M.; Kateriya, S.; Musti, A. M.;
Bamberg, E.; Hegemann, P. Science 2002, 296, 2395.
(11) Gosztola, D.; Yamada, H.; Wasielewski, M. R. J. Am. Chem. Soc.
1995, 117, 2041.
(12) Imahori, H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.;
Ito, O.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 2607.
(13) Imahori, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y.
J. Phys. Chem. B 2000, 104, 2099.
(14) Murakami, T.; Wijagkanalan, W.; Hashida, M.; Tsuchida, K.
Nanomedicine (London) 2010, 5, 867.
(15) Ba, H.; Rodríguez-Fernan
Lett. 2010, 10, 3006.
́
dez, J.; Stefani, F. D.; Feldman, J. Nano
(16) Imahori, H.; Hosomizu, K.; Mori, Y.; Sato, T.; Ahn, T. K.; Kim,
S. K.; Kim, D.; Nishimura, Y.; Yamazaki, I.; Ishii, H.; Hotta, H.;
Matano, Y. J. Phys. Chem. B 2004, 108, 5018.
(17) Murakami, T.; Tsuchida, K.; Hashida, M.; Imahori, H. Mol.
BioSyst. 2010, 6, 789.
(18) Formation of the CS state of Fc−H2P−C60 in DMSO (τ = 5.5
μs) as well as in the deaerated aqueous solution containing PC12 cells
treated with Fc−H2P−C60-loaded cpHDL (τ = 3.0 μs) was confirmed
by transient absorption measurements (Figures S9 and S10).
(19) McDaniel, S. S.; Platoshyn, O.; Yu, Y.; Sweeney, M.; Miriel, V.
A.; Golovina, V. A.; Krick, S.; Lapp, B. R.; Wang, J.-Y.; Yuan, J. X.-J. J.
Appl. Physiol. 2001, 91, 2322.
(20) Bae, Y. M.; Kim, A.; Kim, J.; Park, S. W.; Kim, T.-K.; Lee, Y.-R.;
Kin, B.; Cho, S. I. Biochem. Biophys. Res. Commun. 2006, 347, 468.
(21) Pass, H. I. J. Natl. Cancer Inst. 1993, 85, 443.
(22) Stark, G. J. Membr. Biol. 2005, 205, 1.
(23) Flors, C.; Fryer, M. J.; Waring, J.; Reeder, B.; Bechtold, U.;
Mullineaux, P. M.; Nonell, S.; Wilson, M. T.; Baker, N. R. J. Exp. Bot.
2006, 57, 1725.
ASSOCIATED CONTENT
■
S
* Supporting Information
(24) Conforti, L.; Millhorn, D. E. J. Physiol. 1997, 502, 293.
Experimental details and additional figures. This material is
AUTHOR INFORMATION
■
Corresponding Author
Author Contributions
#These authors contributed equally.
6095
dx.doi.org/10.1021/ja3007275 | J. Am. Chem. Soc. 2012, 134, 6092−6095