various mechanistically different asymmetric transforma-
tions with a wide variety of Lewis acids.6À8 Initial attempts
were made to prove our hypothesis by screening ligands
5 and 6 with various metal salts. Intramolecular amidation
of imine formed between 2-aminobenzamide (2) and benz-
aldehyde (3) was carried out at 25 °C with various Lewis
acids such as Cu(I)OTf, Cu(OTf)2, or Zn(OTf)2 (5 mol %)
and 10 mol % of ligand 5 or 6 in the presence of powdered
Scheme 1. Enantioselective Synthesis of DHQZ 4a
˚
4 A molecular sieves in dichloromethane. It was observed
that DHQZ 4a was isolated in very low yields (10À20%)
with no chiral induction. Since these attempts were not
successful, we turned our attention to pybox ligand com-
plexes with rare metal triflates. The catalytic efficiency of
these complexes as Lewis acids is well demonstrated in the
literature.9,10 We were delighted to observe that pybox
6/Sc(OTf)3 catalyzed the intramolecular amidation of
imine with great efficiency and with an enantiomeric excess
of 34% (Table 1, entry 1). Encouraged by this observation,
we sought to identify the suitable pybox ligand to enhance
the enantioselectivity of this transformation. Valinol,
phenylalaninol, phenyl glycinol, and 1,1-diphenyl valinol
derived pybox ligands 7À10, respectively, failed to
time.5 List et al.5a and Rueping et al.5b developed meth-
odologies for enantioselective synthesis of DHQZs using
chiral Brønsted acids. The first method5a worked well only
for linear aliphatic aldehydes or R-unbranched aldehydes,
and poor enantioselectivity was observed for R-branched
aldehydes including aromatic aldehydes. The method by
Rueping et al. lacks substrate diversity. Except for these
chiral Brønsted acid catalyses, there is no other catalytic
method available to the best of our knowledge for the
asymmetric synthesis of DHQZs. That stimulated us to
develop a high yield metal catalyzed enantioselective
intramolecular amidation of imines to synthesize 2,3-
dihydroquinazolinones. To circumvent the racemization
of an aminal stereocenter, we sought to activate the imine
formedbythe reaction between2-aminobenzamide (2) and
benzaldehyde (3) through a chiral Lewis acid catalyst.
We hoped that a suitable chiral Lewis acid would
mediate intramolecular amidation of imines to form en-
antiomerically pure 2,3-DHQZ 4a (Scheme 1). Although
there are many chiral ligands that can be employed for
Lewis acid mediated catalysis, we initially selected bis-
(oxazoline) 5 and pyridine bis(oxazoline) 6 for evaluation
because they are renowned for their ability to catalyze
Table 1. Evaluation of Box and Pybox Ligands in Lewis Acid
Catalyzed Enantioselective Synthesis of 2,3-Dihydroquinazoli-
nonea 4a
entry
ligand
metal
yield (%)b
ee (%)c,d
1
6
Sc(OTf)3
Sc(OTf)3
Sc(OTf)3
Sc(OTf)3
Sc(OTf)3
Sc(OTf)3
Yb(OTf)3
Y(OTf)3
90
80
82
89
90
94
72
65
60
93
34 (R)
racemic
16 (R)
36 (R)
30 (R)
84 (S)
76 (S)
64 (S)
racemic
98 (S)
2
7
3
8
4
9
5
10
11
11
11
11
11
6
7
8
9
10e
La(OTf)3
Sc(OTf)3
a Reactions were carried out using 300 μmol of 2-aminobenzamide
(2), 360 μmol of benzaldehyde (3), 5 mol % of Lewis acid, 10 mol % of
˚
ligand, and powdered 4 A molecular sieves at 25 °C in CH2Cl2 for
6À48 h. b Isolated yields. c Enantiomeric excess were determined on a
chiral stationary phase. d Absolute configuration of the product is
indicated in the parentheses. e Lewis acid/Ligand ratio (1:2.5 mol %)
was used.
(6) For selected references of box catalyzed reactions, see: (a) Evans,
D. A.; Woerpel, A. K.; Hinman, M. M.; Faul, M. M. J. Am. Chem. Soc.
1991, 113, 726. (b) Desimoni, G.; Faita, G.; Jorgenen, K. A. Chem. Rev.
2006, 106, 3561. (c) Xu, X.; Hu, W.-H.; Doyle, M. P. Angew. Chem., Int.
Ed. 2011, 50, 6392 and references therein.
(7) For selected references of pybox, see: (a) Nishiyama, H.; Sakaguchi,
H.; Nakamura, T.; Horlhata, M.; Kondo, M.; Itoh, K. Organometallics
1989, 8, 846. (b) Evans, D. A.;Murry, J. A.;Kozlowski, M. C.J. Am. Chem.
Soc. 1996, 118, 5814. (c) Desimoni, G.; Faita, G.; Quadrelli, P. Chem. Rev.
2003, 103, 3119. (d) Poisson, T.; Yamashita, Y.; Kobayashi, S. J. Am.
Chem. Soc. 2010, 132, 7890. (e) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.;
Fettinger, J. C.;Franz, A. K.Angew. Chem., Int. Ed. 2010, 49, 744. (f) Singh,
P. K.; Singh, V. K. Org. Lett. 2010, 12, 80. (g) Zeng, T.; Yang, L.; Hudson,
R.;Song, G.;Moores, A. R.;Li, C.-J.Org. Lett. 2011, 13, 442. (h) Gutierrez,
E. G.; Wong, C. J.; Sahin, A. H. Org. Lett. 2011, 13, 5754 and references
therein.
(9) (a) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L.
Chem. Rev. 2002, 102, 2227. (b) Luo, S.; Zhu, L.; Talukdar, A.; Zhang,
G.; Mi, X.; Cheng, J.-P.; Wang, P. G. Mini-Rev. Org. Chem. 2005, 2, 177.
(c) Burai, R.; Ramesh, C.; Shorty, M.; Curpan, R.; Bologa, C.; Sklar,
L. A.; Oprea, T.; Prossnitz, E. R.; Arterburn, J. B. Org. Biomol. Chem.
2010, 8, 2252 and references therein.
(10) For selected applications of Scandium pybox, see: (a) Desimoni,
G.; Faita, G.; Guala, M.; Pratelli, C. J. Org. Chem. 2003, 68, 7862. (b)
Liang, G.; Trauner, D. J. Am. Chem. Soc. 2004, 126, 9544. (c) Evans,
D. A.; Wu, J. J. Am. Chem. Soc. 2005, 127, 8006. (d) Evans, D. A.; Aye,
Y. J. Am. Chem. Soc. 2006, 128, 11034. (e) Comelles, J.; Pericas, A.;
Moreno-Manas, M.; Vallribera, A.; Drudis-Sole, G.; Lledos, A.;
Parella, T.; Roglans, A.; Garcia-Granda, S.; Roces-Fernandez, L.
J. Org. Chem. 2007, 72, 2077. (f) Desimoni, G.; Faita, G.; Toscanini,
M.; Boiocchi, M. Chem.;Eur. J. 2008, 14, 3630. (g) Hanhan, N. V.;
Ball-Jones, N. R.; Tran, N. T.; Franz, A. K. Angew. Chem., Int. Ed. 2011,
50, 1 and references therein.
(8) For synthesis of box and pybox, see: (a) Gupta, A. D.; Bhuniya,
D.; Singh, V. K. Tetrahedron 1994, 50, 13725. (b) Cornejo, A.; Fraile,
J. M.; Garcia, J. I.; Gil, M. J.; Martinez-Merino, V.; Mayoral, J. A.;
Pires, E.; Villalba, I. Synlett 2005, 15, 2321.
Org. Lett., Vol. 14, No. 7, 2012
1897