M. Pourshahbaz et al. / Tetrahedron Letters 50 (2009) 5987–5989
5989
1003; (g) Shankar, S.; Chen, Q.; Ganapathy, S.; Singh, K. P.; Srivastava, R. K. Mol.
Cancer Ther. 2008, 7, 2328–2338.
δ
δ
N
H
H
SR
N
+
SR
2. (a) Steudel, R.; Hassenberg, K.; Pickardt, J. Organometallics 1999, 18, 2910–
2911; (b) Grainger, R.; Procopio, A.; Steed, J. W. Org. Lett. 2001, 3, 3565–3568;
(c) Lee, A. H. F.; Chen, J.; Liu, D.; Leung, T. Y. C.; Chan, A. S. C.; Li, T. J. Am. Chem.
Soc. 2002, 124, 13972–13973; (d) Kimura, T.; Sasaki, T.; Yamaki, H.; Suzuki, E.;
Niizuma, S. Eur. J. Org. Chem. 2003, 4902–4908; (e) Ishii, A.; Suzuki, M.;
Yamashita, R. Tetrahedron 2006, 62, 5441–5447; (f) Sato, R.; Ohta, H.;
Yamamoto, T.; Nakajo, S.; Ogawa, S.; Alam, A. Tetrahedron Lett. 2007, 48,
4991–4999; (g) Sato, R.; Fujio, T.; Nakajo, S.; Ogawa, S.; Alam, A. Tetrahedron
Lett. 2007, 48, 3013–3016.
3. (a) Nicolaou, K. C.; Dai, W. M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387–1416;
(b) Nicolaou, K. C.; Hummel, C. W.; Nakada, M.; Shibayama, K.; Pitsinos, E. N.;
Saimoto, H.; Mizuno, Y.; Baldenius, K. U.; Smith, A. L. J. Am. Chem. Soc. 1993,
115, 7625–7635.
4. (a) Katritzky, A. R.; Zhao, X.; Hitchings, G. J. Synlett 1990, 473–476; (b)
Yasuhara, A.; Fuwa, K. Bull. Chem. Soc. Jpn. 1977, 50, 3029–3032.
5. (a) Derbesy, G.; Harpp, D. N. Tetrahedron Lett. 1994, 35, 5381–5384; (b) Clayton,
J.; Etzler, D. J. Am. Chem. Soc. 1974, 69, 974–975.
6. Organic Chemistry of Bivalent Sulfur; Reid, E. E., Ed.; Chemical Publishing
Company: New York, 1960; Vol. 3, p 387.
Cl
O
Cl
δ
δ
S
N
H
SR
+
RS
S
N
H
S
Cl
Cl
+
O
Cl
Cl
Cl
RS
S
Cl
H
N
N
+
RS
+
O
H
O
SR
Cl
Cl
SR
δ
δ
N
H
SR
S
+
+
S
N
H
RS
+
O
O
O
SR
Cl
7. Vineyard, B. D. J. Org. Chem. 1966, 31, 601–602.
8. Buckman, J. D.; Field, L. J. Org. Chem. 1967, 32, 454–457.
Cl
H
RS
S
SR
N
+
H
S
N
RS
O
9. (a) Williams, C. R.; Britten, J. F.; Harpp, D. N. J. Org. Chem. 1994, 59, 806–812; (b)
Hou, Y.; Abu-Yousef, I. A.; Doung, Y.; Harpp, D. N. Tetrahedron Lett. 2001, 42,
8607–8610; (c) Harpp, D. N.; Granata, A. Tetrahedron Lett. 1976, 17, 3001–3004;
(d) Harpp, D. N.; Ash, D. K.; Back, T. G.; Gleason, J. G.; Orwig, B. A.; Vanhorn, W.
F.; Snyder, J. P. Tetrahedron Lett. 1970, 11, 3551–3554; (e) Harpp, D. N.; Gingras,
M.; Aida, T.; Chan, T. H. Synthesis 1987, 1122–1124; (f) Abu-Yousef, I. A.; Rys, A.
Z.; Harpp, D. N. J. Sulfur Chem. 2007, 28, 251–258; (g) Abu-Yousef, I. A.; Rys, A.
Z.; Harpp, D. N. J. Sulfur Chem. 2006, 27, 15–24; (h) Ryan, M. D.; Abu-Yousef, I.
A.; Rys, A. Z.; Cheer, C. J.; Harpp, D. N. Sulfur Lett. 2003, 26, 29–35; (i) Zysman-
Colman, E.; Harpp, D. N. J. Org. Chem. 2003, 68, 2487–2489.
10. Haoyun, A.; Jenny, Z.; Xiaobo, W.; Xiao, X. Bioorg. Med. Chem. Lett. 2006, 16,
4826–4829.
11. Capozzi, G.; Capperucci, A.; Degl’Innocenti, A.; Duce, D. R.; Menichetti, S.
Tetrahedron Lett. 1989, 30, 2991–2994.
12. Sinha, P.; Kundu, A.; Roy, S.; Prabhakar, S.; Vairamani, M.; Sankar, A. R.;
Kunwar, A. C. Organometallics 2001, 20, 157–162.
13. Banerji, A.; Kalena, G. P. Tetrahedron Lett. 1980, 21, 3003–3004.
14. (a) Harpp, D. N. Phosphorus, Sulfur Silicon 1997, 120/121, 41–59; (b) Tardif, S. L.;
Rys, A. Z.; Abrams, C. B.; Abu-Yousef, I. A.; Leste´-Lasserre, P. B. F.; Schultz, E. K.
V.; Harpp, D. N. Tetrahedron 1997, 53, 12225–12236; (c) Abu-Yousef, I. A.;
Harpp, D. N. J. Org. Chem. 1997, 62, 8366–8371.
15. (a) Schenk, W. A. Angew. Chem., Int. Ed. Engl. 1987, 26, 98–109; (b) Huang, R.;
Guzei, I. A.; Espenson, J. H. Organometallics 1999, 18, 5420–5422; (c) Clennan, E.
L.; Stensaas, K. L. Org. Prep. Proced. Int. 1998, 30, 551–600; (d) Field, L.;
Lacefield, W. B. J. Org. Chem. 1966, 31, 3555–3561.
16. (a) Ghosh, T.; Bartlett, P. D. J. Am. Chem. Soc. 1988, 110, 7499–7506; (b) Watson,
W. H.; Krawiec, M.; Ghosh, T.; Bartlett, P. D. Acta Crystallogr. 1992, C48, 2092–
2094; (c) Kimura, T.; Hanzawa, M.; Horn, E.; Kawai, Y.; Ogawa, S.; Sato, R.
Tetrahedron Lett. 1997, 38, 1607–1610.
17. Joshaghani, M.; Khosropour, A. R.; Jafari, H.; Mohammadpoor-Baltork, I.
Phosphorus, Sulfur Silicon 2005, 180, 117–123.
Scheme 3.
presence of triethylamine instead of BPTB, albeit in longer reaction
times. Similar results obtained confirm that BPTB may act as a base
in these reactions.
The reactions are pH sensitive and were carried out in solutions
of different pH. The best results were obtained in alkali media at a
þ
pH of about 9–10 using NH3/NH4 buffer.
The trisulfide 2-oxide products were isolated and characterized
by FTIR and 1H NMR spectroscopy and elemental analysis (see Sup-
plementary data).18 The presence of a relatively sharp band at
about 1090–1130 cmꢀ1 was attributed to the S@O stretching fre-
quency. The 1H NMR spectra were very similar to the correspond-
ing disulfide albeit with a greater shift into the downfield region
due to the presence of the relatively strong electron-withdrawing
S@O group.
In conclusion, the high selectivity along with very short reaction
times, simple work-up, ease of handling and significant stability of
the BPTB reagent are advantages of this system.
Acknowledgements
18. General procedures for the preparation of trisulfide-2-oxides: Procedure A: To a
stirred solution of a thiol (2 mmol) in acetonitrile (5 ml) was added BPTB (0.4 g,
1 mmol). A pale yellow solid precipitated. Thionyl chloride (1 mmol) was
added gradually and the pH of the solution was maintained at 9.5 using NH3/
The authors thank the Razi University Research Council and
Kermanshah Oil Refining Company for support of this work.
þ
NH4 buffer. The mixture was stirred and the progress of the reaction was
Supplementary data
monitored by TLC (n-heptane–EtOAc, 3:1). After the time according to Table 1,
a pale yellow solid formed which was extracted with ether (3 ꢁ 10 ml). The
organic layers were combined and dried over anhydrous MgSO4. The solvent
was evaporated and the crude product was recrystallized from (n-heptane–
EtOAc, 3:1) to afford the pure trisulfide 2-oxide product. For characterization
see Supplementary data.Procedure B: A similar procedure to that described
above was used for the synthesis of the trisulfide 2-oxide involving gradual
Supplementary data associated with this article can be found, in
References and notes
addition of BPTB (1 mmol) to
a stirred solution of a thiol (2 mmol) in
acetonitrile (5 ml) and thionyl chloride (1 mmol).
1. (a) Block, E. Angew. Chem, Int. Ed. Engl. 1992, 31, 1135–1178; (b) Wijaya, C. H.;
Nishimura, H.; Tanaka, T.; Mizutani, J. J. Food Sci. 1991, 56, 72–75; (c) An, H.;
Zhu, J.; Wang, X.; Xu, X. Bioorg. Med. Chem. Lett. 2006, 16, 4826–4829; (d)
Powolny, A. A.; Singh, S. V. Cancer Lett. 2008, 269, 305–314; (e) Gu, L.; Li, L.;
Chen, Z.; Pan, H.; Jiang, H.; Zeng, S.; Xu, X.; An, H. J. Chromatogr., B 2008, 868,
77–82; (f) Lei, Y. P.; Chen, H. W.; Sheen, L. Y.; Lii, C. K. J. Nutr. 2008, 138, 996–
19. (a) Inorganic polymers; Stone, F. G. A., Graham, A. G., Eds.; Academic Press Inc:
New York, 1962; p 149; (b) Vineyard, B. D. J. Org. Chem. 1967, 32, 3833–3836.
20. (a) Steudel, R.; Luger, P.; Bradaczek, H. Chem. Ber. 1977, 110, 3553–3560;
(b) Steudel, R.; Schenk, P. W.; Bilal, J. Z. Anorg. Allg. Chem. 1967, 353, 250–
258.