N. B. Chernysheva et al. / Bioorg. Med. Chem. Lett. 22 (2012) 2590–2593
2593
Table 1
7xc by the Developmental Therapeutics Program at NCI (Anti-can-
Effects of 4-oxa- and 4-aza-podophyllotoxins on the sea urchin embryos
Compound
ECa (nM)
Supplementary data
Cleavage alteration
Cleavage arrest
Embryo spinning
PT
20
50
5
50
500
50
200
2000
50
Supplementary data associated with this article can be found, in
Ib
IIb
5xa
7xa
5xbb
7xb
5xc
7xc
7xd
5xeb
7xe
7ya
5ybb
7yb
7zf
50
5
0.5
2
10
10
100
2
500
50
5
10
50
50
500
10
5
2000
50
500
200
50
100
1000
500
4000
200
50
5000
500
2000
>4000
References and notes
1. Canel, C.; Moraes, R. M.; Dayan, F. E.; Ferreira, D. Phytochemistry 2000, 54, 115.
2. Desbene, S.; Giorgi-Renault, S. Curr. Med. Chem. Anticancer Agents 2002, 2, 71.
3. Gordaliza, M.; Garcia, P. A.; del Corral, J. M.; Castro, M. A.; Gomez-Zurita, M. A.
Toxicon 2004, 44, 441.
4. Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327.
5. Ravelli, R. B.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.;
Knossow, M. Nature 2004, 428, 198.
6. Gupta, S.; Das, L.; Datta, A. B.; Poddar, A.; Janik, M. E.; Bhattacharyya, B.
Biochemistry 2006, 45, 6467.
7. Meresse, P.; Dechaux, E.; Monneret, C.; Bertounesque, E. Curr. Med. Chem. 2004,
11, 2443.
1
100
10
50
2000
200
>4000
8. McLeod, L. H. In Cancer clinical pharmacology; Schellens, J. H. M., McLeod, H. L.,
Newell, D. R., Eds.; Oxford University Press: New York, 2005; pp 104–116.
9. Hitotsuyanagi, Y.; Fukuyo, M.; Tsuda, K.; Kobayashi, M.; Ozeki, A.; Itokawa, H.;
Takeya, K. Bioorg. Med. Chem. Lett. 2000, 10, 315.
10. Husson, H.-P.; Giorgi-Renault, S.; Tratrat, C.; Atassi, G.; Pierre, A.; Renard, P.;
Pfeiffer, B. U.S. Patent 6,548,515, 2003.
a
The sea urchin embryo assay was conducted as described in Ref. 29. Fertilized eggs
and hatched blastulae were exposed to twofold decreasing concentrations of com-
pounds. Duplicate measurements showed no differences in effective threshold con-
centration (EC) values. Experimental details are presented in Supplementary data.
b
Data from Ref. 18.
11. Magedov, I. V.; Manpadi, M.; Slambrouck, S. V.; Steelant, W. F.; Rozhkova, E.;
Przheval’skii, N. M.; Rogelj, S.; Kornienko, A. J. Med. Chem. 2007, 50, 5183.
12. Magedov, I. V.; Manpadi, M.; Rozhkova, E.; Przheval’skii, N. M.; Rogelj, S.; Shors,
S. T.; Steelant, W. F.; Van slambrouck, S.; Kornienko, A. Bioorg. Med. Chem. Lett.
2007, 17, 1381.
13. Frackenpohl, J.; Adelt, I.; Antonicek, H.; Arnold, C.; Behrmann, P.; Blaha, N.;
Bohmer, J.; Gutbrod, O.; Hanke, R.; Hohmann, S.; van Houtdreve, M.; Losel, P.;
Malsam, O.; Melchers, M.; Neufert, V.; Peschel, E.; Reckmann, U.; Schenke, T.;
Thiesen, H.-P.; Velten, R.; Vogelsang, K.; Weiss, H.-C. Bioorg. Med. Chem. 2009,
17, 4160.
14. Labruere, R.; Gautier, B.; Testud, M.; Seguin, J.; Lenoir, C.; Desbene-Finck, S.;
Helissey, P.; Garbay, C.; Chabot, G. G.; Vidal, M.; Giorgi-Renault, S.
ChemMedChem 2010, 5, 16.
15. Shi, C.; Wang, J.; Chen, H.; Shi, D. J. Comb. Chem. 2010, 12, 430.
16. Kamal, A.; Suresh, P.; Mallareddy, A.; Kumar, B. A.; Reddy, P. V.; Raju, P.;
Tamboli, J. R.; Shaik, T. B.; Jain, N.; Kalivendi, S. V. Bioorg. Med. Chem. 2011, 19,
2349.
Table 2
Growth inhibition of OVCAR-8 and NCI/ADR-RES cell lines
Compound
Cell growth inhibitiona (GI50, nM)
OVCAR-8b NCI/ADR-RESc
II
232.0
788.0
<10
103.0
334.0
<10
7xa
5xb
7xb
7xc
5xe
5yb
55.6
49.5
20.4
18.6
23.5
<10
629.0
595.0
a
b
c
GI50: Concentration required for 50% cell growth inhibition.
OVCAR-8: Ovarian cancer cell line 8.
NCI/ADR-RES: P-glycoprotein-overexpressing multi-drug resistant cell line
17. Magedov, I. V. F. L.; Manpadi, M.; Bhoga, U. D.; Tang, H.; Evdokimov, N. M.;
George, O.; Georgiou, K. H.; Renner, S.; Getlik, M.; Kinnibrugh, T. L.; Fernandes,
M. A.; van Slambrouck, S.; Steelant, W. F. A.; Shuster, C. B.; Rogelj, S.; an Otterlo,
W. A. L.; Kornienko, A. J. Med. Chem. 2011, 54, 4234.
derived from OVCAR-8.34
18. Semenova, M. N.; Kiselyov, A. S.; Tsyganov, D. V.; Konyushkin, L. D.; Firgang, S.
I.; Semenov, R. V.; Malyshev, O. R.; Raihstat, M. M.; Fuchs, F.; Stielow, A.;
Lantow, M.; Philchenkov, A. A.; Zavelevich, M. P.; Zefirov, N. S.; Kuznetsov, S. A.;
Semenov, V. V. J. Med. Chem. 2011, 54, 7138.
19. For review, see: Kumar, A.; Kumar, V.; Alegria, A. E.; Malhotra, S. V. Curr. Med.
Chem. 2011, 18, 3853.
20. Batra, J. K.; Kang, G. J.; Jurd, L.; Hamel, E. Biochem. Pharmacol. 1988, 37, 2595.
21. Jurd, L. J. Heterocycl. Chem. 1996, 33, 1227.
22. Semenov, V. V.; Rusak, V. A.; Chartov, E. M.; Zaretsky, M. I.; Konyushkin, L. D.;
Firgang, S. I.; Chizhov, A. O.; Elkin, V. V.; Latin, N. N.; Bonashek, V. M.; Stas’eva,
O. N. Russ. Chem. Bull. 2007, 56, 2448.
23. Hitotsuyanagi, Y.; Ichihara, Y.; Takeya, K.; Itokawa, H. Tetrahedron Lett. 1994,
35, 9401.
24. Broughton, H. B.; Gordaliza, M.; Castro, M.-A.; Miguel del Corral, J. M.; San
Feliciano, A. J. Mol. Struct. TheoChem. 2000, 504, 287.
25. Imperio, D.; Pirali, T.; Galli, U.; Pagliai, F.; Cafici, L.; Canonico, P. L.; Sorba, G.;
Genazzani, A. A.; Tron, G. C. Bioorg. Med. Chem. 2007, 15, 6748.
26. Semenov, V. V.; Kiselyov, A. S.; Titov, I. Y.; Sagamanova, I. K.; Ikizalp, N. N.;
Chernysheva, N. B.; Tsyganov, D. V.; Konyushkin, L. D.; Firgang, S. I.; Semenov, R.
V.; Karmanova, I. B.; Raihstat, M. M.; Semenova, M. N. J. Nat. Prod. 2010, 73, 1796.
27. Jurd, L. J. Heterocycl. Chem. 1997, 34, 601.
ity against colon cancer cells (Figure S1, Supplementary data). As
shown in Table 2, all tested 4-oxa- and 4-aza-PTs were more cyto-
toxic against NCI/ADR-RES cells overexpresing P-glycoprotein than
against the parent OVCAR-8 cell line suggesting a potential for
these agents to overcome multi-drug resistance.
In summary, a series of novel 4-oxa-PT derivatives displayed sig-
nificant microtubule destabilizing activity in the sea urchin embryo
assay with EC values in the 10–100 nM range (vs 20 nM for PT).
Notable structural features of these active compounds included
myristicin-derived or 30,50-dimethoxy substitution pattern in the
ring E and a 6-methoxy moiety in the ring B, replacing the methyl-
enedioxy ring A. Several 4-oxa-PT derivatives and their aza-analogs
(7xb, 7xe, 7yb, 5xa, 5xb, 5xc) displayed pronounced inhibition of
human cancer cell growth in the NCI60 cytotoxicity screen. More-
over, these agents were determined to be active against multi-drug
resistant NCI/ADR-RES cells. Although generally 4-aza-PTs were
more potent than the respective 4-oxa- derivatives, stability of
the latter series towards oxidation may prove to be of importance
for the development of anticancer agents with in vivo activity.
28. Hitotsuyanagi, Y.; Kobayashi, M.; Fukuyo, M.; Takeya, K.; Itokawa, H.
Tetrahedron Lett. 1997, 38, 8295.
29. Semenova, M. N.; Kiselyov, A. S.; Semenov, V. V. Biotechniques 2006, 40, 765.
31. Semenova, M. N.; Kiselyov, A. S.; Titov, I. Y.; Raihstat, M. M.; Molodtsov, M.;
Grishchuk, E.; Spiridonov, I.; Semenov, V. V. Chem. Biol. Drug Des. 2007, 70, 485.
32. Kiselyov, A. S.; Semenova, M. N.; Chernyshova, N. B.; Leitao, A.; Samet, A. V.;
Kislyi, K. A.; Raihstat, M. M.; Oprea, T.; Lemcke, T.; Lantowe, M.; Weiss, D. G.;
Ikizalp, N. N.; Kuznetsov, S. A.; Semenov, V. V. Eur. J. Med. Chem. 2010, 45, 1683.
Both sea urchin embryo assay and DTP NCI60 cell line activity data are
Acknowledgments
This work was supported by a Grant from Chemical Block Ltd.
We thank the National Cancer Institute (NCI) (Bethesda, MD,
USA) for screening compounds II, 5xb, 5xe, 5yb, 7xa, 7xb, and
35. Momose, T.; Toyooka, N.; Takeuchi, Y. Heterocycles 1986, 24, 1429.